Mid-infrared spectra of comet nuclei

Abstract Comet nuclei and D-type asteroids have several similarities at optical and near-IR wavelengths, including near-featureless red reflectance spectra, and low albedos. Mineral identifications based on these characteristics are fraught with degeneracies, although some general trends can be identified. In contrast, spectral emissivity features in the mid-infrared provide important compositional information that might not otherwise be achievable. Jovian Trojan D-type asteroids have emissivity features strikingly similar to comet comae, suggesting that they have the same compositions and that the surfaces of the Trojans are highly porous. However, a direct comparison between a comet and asteroid surface has not been possible due to the paucity of spectra of comet nuclei at mid-infrared wavelengths. We present 5–35 µm thermal emission spectra of comets 10P/Tempel 2, and 49P/Arend-Rigaux observed with the Infrared Spectrograph on the Spitzer Space Telescope. Our analysis reveals no evidence for a coma or tail at the time of observation, suggesting the spectra are dominated by the comet nucleus. We fit each spectrum with the near-Earth asteroid thermal model (NEATM) and find sizes in agreement with previous values. However, the NEATM beaming parameters of the nuclei, 0.74–0.83, are systematically lower than the Jupiter-family comet population mean of 1.03 ±  0.11, derived from 16- and 22-µm photometry. We suggest this may be either an artifact of the spectral reduction, or the consequence of an emissivity low near 16 µm. When the spectra are normalized by the NEATM model, a weak 10-µm silicate plateau is evident, with a shape similar to those seen in mid-infrared spectra of D-type asteroids. A silicate plateau is also evident in previously published Spitzer spectra of the nucleus of comet 9P/Tempel 1. We compare, in detail, these comet nucleus emission features to those seen in spectra of the Jovian Trojan D-types (624) Hektor, (911) Agamemnon, and (1172) Aneas, as well as those seen in the spectra of seven comet comae. The comet comae present silicate features with two distinct shapes, either trapezoidal, or more rounded, the latter apparently due to enhanced emission near 8 to 8.5 µm. The surfaces of Tempel 2, Arend-Rigaux, and Hektor best agree with the comae that present trapezoidal features, furthering the hypothesis that the surfaces of these targets must have high porosities in order to exhibit a spectrum similar to a comet coma. An emissivity minimum at 15 µm, present in the spectra of Tempel 2, Arend-Rigaux, Hektor, and Agamemnon, is also described, the origin of which remains unidentified. The compositional similarity between D-type asteroids and comets is discussed, and our data supports the hypothesis that they have similar origins in the early Solar System.

[1]  E. M. Standish,et al.  JPL's On-Line Solar System Data Service , 1996 .

[2]  Z. Sekanina Fan-shaped coma, orientation of rotation axis, and surface structure of a cometary nucleus. I - Test of a model on four comets , 1979 .

[3]  M. Fulchignoni,et al.  Asteroids 2867 Steins and 21 Lutetia: surface composition from far infrared observations with the Spitzer space telescope , 2008 .

[4]  Driss Takir,et al.  Outer Main Belt asteroids: Identification and distribution of four 3-μm spectral groups , 2011 .

[5]  Dale P. Cruikshank,et al.  NEAR-INFRARED SPECTROSCOPY OF TROJAN ASTEROIDS: EVIDENCE FOR TWO COMPOSITIONAL GROUPS , 2008, 1012.1284.

[6]  C. Woodward,et al.  Silicate Mineralogy of the Dust in the Inner Coma of Comet C/1995 01 (Hale-Bopp) Pre- and Postperihelion , 1999 .

[7]  Richard P. Binzel,et al.  High surface porosity as the origin of emissivity features in asteroid spectra , 2012 .

[8]  C. Lisse,et al.  A new analysis of Spitzer observations of Comet 29P/Schwassmann–Wachmann 1 , 2015, 1506.07037.

[9]  A. Harris,et al.  Eclipsing binary Trojan asteroid Patroclus: Thermal inertia from Spitzer observations , 2009, 0908.4198.

[10]  M. Hanner,et al.  Does comet P/Arend-Rigaux have a large dark nucleus? , 1985 .

[11]  N. Biver,et al.  The Deep Impact Earth-Based Campaign , 2005 .

[12]  Brian Carcich,et al.  A ballistics analysis of the Deep Impact ejecta plume: Determining Comet Tempel 1's gravity, mass, and density , 2007 .

[13]  Christina Kluge,et al.  Data Reduction And Error Analysis For The Physical Sciences , 2016 .

[14]  Robert H. Brown,et al.  Ellipsoidal geometry in asteroid thermal models: The standard radiometric model , 1985 .

[15]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. , 1993 .

[16]  O. Witasse,et al.  Paucity of Tagish Lake-like parent bodies in the Asteroid Belt and among Jupiter Trojans , 2013 .

[17]  W. Delamere,et al.  Surface temperature of the nucleus of Comet 9P/Tempel 1 , 2007 .

[18]  K. J. Meech,et al.  Spitzer Spectral Observations of the Deep Impact Ejecta , 2006, Science.

[19]  T. Hiroi,et al.  Revisiting the search for the parent body of the Tagish Lake meteorite -Case of a T/D asteroid 308 Polyxo- , 2003 .

[20]  D. Brownlee,et al.  The nucleus of Comet 9P/Tempel 1: Shape and geology from two flybys , 2013 .

[21]  M. Zolensky,et al.  The Mineralogy of Cometary Dust , 2010 .

[22]  C. Woodward,et al.  A Spitzer Study of Comets 2P/Encke, 67P/Churyumov-Gerasimenko, and C/2001 HT50 (LINEAR-NEAT) , 2006, astro-ph/0607416.

[23]  J. Brucato,et al.  308 Polyxo: ISO-SWS spectrum up to 26 micron , 2004 .

[24]  Larry A. Lebofsky,et al.  The composition and origin of the C, P, and D asteroids: Water as a tracer of thermal evolution in the outer belt , 1990 .

[25]  Mauricio Solar,et al.  Astronomical data analysis software and systems , 2018, Astron. Comput..

[26]  J. Spencer A rough-surface thermophysical model for airless planets , 1990 .

[27]  Robert K. Vincent,et al.  The behavior of spectral features in the infrared emission from particulate surfaces of various grain sizes , 1968 .

[28]  N. Mcbride,et al.  Thermal infrared and optical observations of four near-Earth asteroids , 2008 .

[29]  D. Frank,et al.  Olivine in terminal particles of Stardust aerogel tracks and analogous grains in chondrite matrix , 2014 .

[30]  David Jewitt,et al.  From Kuiper Belt Object to Cometary Nucleus: The Missing Ultrared Matter , 2002 .

[31]  Richard J. Rudy,et al.  A refined “standard” thermal model for asteroids based on observations of 1 Ceres and 2 Pallas , 1986 .

[32]  T. Encrenaz,et al.  Subsurface properties and early activity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[33]  Andrew Scott Rivkin,et al.  Asteroid 65 Cybele: Detection Of Small Silicate Grains, Water-Ice And Organics , 2010 .

[34]  J. Rho,et al.  Explosion of Comet 17P/Holmes as revealed by the Spitzer Space Telescope , 2010, 1001.4161.

[35]  K. Klaasen,et al.  Thermal Inertia and Surface Roughness of Comet 9P/Tempel 1 Derived from Recalibrated Deep Impact NIR Spectroscopy , 2010 .

[36]  David Jewitt,et al.  Spectroscopic Search for Water Ice on Jovian Trojan Asteroids , 2006 .

[37]  D. Jewitt,et al.  A CCD portrait of Comet P/Tempel 2 , 1989 .

[38]  Karen J. Meech,et al.  Deep Impact photometry of Comet 9p/Tempel 1 , 2007 .

[39]  S. Debei,et al.  On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[40]  M. F. A'Hearn,et al.  Deep Impact: excavating comet 9P/Tempel 1 , 2005, Proceedings of the International Astronomical Union.

[41]  Paul S. Smith,et al.  The Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .

[42]  Richard P. Binzel,et al.  Comets in the near-Earth object population , 2006 .

[43]  S. Quanz,et al.  Evolution of Dust and Ice Features around FU Orionis Objects , 2007, 0706.3593.

[44]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[45]  J. Licandro,et al.  Nuclear Spectra of Comet 162P/Siding Spring (2004 TU12) , 2006 .

[46]  M. Hanner,et al.  The 8-13 micron spectra of comets and the composition of silicate grains , 1994 .

[47]  David MakovozFrancine R. Marleau Point‐Source Extraction with MOPEX , 2004 .

[48]  D. Tholen,et al.  Asteroid Taxonomy from Cluster Analysis of Photometry. , 1984 .

[49]  M. Belton,et al.  The temperature, thermal inertia, roughness and color of the nuclei of Comets 103P/Hartley 2 and 9P/Tempel 1 , 2013 .

[50]  C. Woodward,et al.  Gemini-N mid-IR observations of the dust properties of the ejecta excavated from Comet 9P/Tempel 1 during Deep Impact , 2007 .

[51]  H. Melosh,et al.  Deep Impact: Excavating Comet Tempel 1 , 2005, Science.

[52]  E. Bergin,et al.  Spitzer Observations of CO2 Ice toward Field Stars in the Taurus Molecular Cloud , 2005, astro-ph/0505345.

[53]  H. Campins,et al.  The nucleus of Comet P/Tempel 2 , 1989 .

[54]  Richard P. Binzel,et al.  An extension of the Bus asteroid taxonomy into the near-infrared , 2009 .

[55]  H. Melosh,et al.  Shape, density, and geology of the nucleus of Comet 103P/Hartley 2 , 2013 .

[56]  David Jewitt,et al.  A Population of Comets in the Main Asteroid Belt , 2006, Science.

[57]  Alan W. Harris,et al.  Application of photometric models to asteroids. , 1989 .

[58]  D. Mccarthy,et al.  R- and J-band photometry of Comets 2P/Encke and 9P/Tempel 1 , 2006 .

[59]  M. Wolff,et al.  INFRARED SPECTROSCOPY OF COMET 73P/SCHWASSMANN-WACHMANN 3 USING THE SPITZER SPACE TELESCOPE , 2005, 1107.2071.

[60]  Michael W. Werner,et al.  The spitzer space telescope mission , 2005 .

[61]  J. Licandro,et al.  Nuclear Spectra of Comet 28P Neujmin 1 , 2007 .

[62]  Peter H. Schultz,et al.  Evolution of the Deep Impact flash: Implications for the nucleus surface based on laboratory experiments , 2007 .

[63]  L. Jorda,et al.  The properties of asteroid (2867) Steins from Spitzer Space Telescope observations and OSIRIS shape reconstruction , 2011, 1104.5328.

[64]  A. Harris,et al.  Physical properties of near‐Earth asteroids from thermal infrared observations and thermal modeling , 2002 .

[65]  J. Lagerros THERMAL PHYSICS OF ASTEROIDS. IV. THERMAL INFRARED BEAMING , 1998 .

[66]  William T. Reach,et al.  Survey of cometary CO2, CO, and particulate emissions using the Spitzer Space Telescope: Smog check for comets , 2013, 1306.2381.

[67]  J. Luu Spectral Diversity among the Nuclei of Comets , 1993 .

[68]  M. Belton,et al.  Rotationally Resolved 8-35 Micron Spitzer Space Telescope Observations of the Nucleus of Comet 9P/Tempel 1 , 2005 .

[69]  R. Gehrz,et al.  0.7- to 23 μm photometric observations of P/Halley 1986 III and six recent bright comets , 1992 .

[70]  B. Hapke,et al.  PHOTOMETRIC STUDIES OF COMPLEX SURFACES, WITH APPLICATIONS TO THE MOON , 1963 .

[71]  Michael E. Brown,et al.  THE 3–4 μm SPECTRA OF JUPITER TROJAN ASTEROIDS , 2016, 1606.03013.

[72]  L. Lebofsky,et al.  Systematic biases in radiometric diameter determinations , 1989 .

[73]  R. Knacke,et al.  The nucleus of Comet P/Arend-Rigaux , 1986 .

[74]  C. Woodward,et al.  RECTIFIED ASTEROID ALBEDOS AND DIAMETERS FROM IRAS AND MSX PHOTOMETRY CATALOGS , 2010, 1006.4362.

[75]  Emmanuel Lellouch,et al.  The Spectrum of Comet Hale-Bopp (C/1995 O1) Observed with the Infrared Space Observatory at 2.9 Astronomical Units from the Sun , 1997, Science.

[76]  Karen J. Meech,et al.  The NEOWISE-Discovered Comet Population and the CO+CO2 production rates , 2015 .

[77]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: A Feature-Based Taxonomy , 2002 .

[78]  3-14 Micron Spectroscopy of Comets C/2002 O4 (Hönig), C/2002 V1 (NEAT), C/2002 X5 (Kudo-Fujikawa), C/2002 Y1 (Juels-Holvorcem), and 69P/Taylor and the Relationships among Grain Temperature, Silicate Band Strength, and Structure among Comet Families , 2004, astro-ph/0404360.

[79]  W. Reach,et al.  A survey of debris trails from short-period comets , 2007, 0704.2253.

[80]  M. Kelley,et al.  The composition of dust in Jupiter-family comets inferred from infrared spectroscopy , 2008, 0811.3939.

[81]  Robert H. Brown,et al.  Constraints on the surface composition of Trojan asteroids from near-infrared (0.8–4.0 μm) spectroscopy , 2003 .

[82]  R. Walker,et al.  The tempel 2 dust trail , 1990 .

[83]  D. Morrison,et al.  Radiometry of asteroids , 1979 .

[84]  J. Lagerros Thermal physics of asteroids , 1998 .

[85]  A. Fitzsimmons,et al.  A spectroscopic survey of D-type asteroids , 1994 .

[86]  otros,et al.  Absolute calibration and characterization of the multiband imaging photometer for Spitzer. I. The stellar calibrator sample and the 24 μm calibration , 2007 .

[87]  Simon F. Green,et al.  Return to Comet Tempel 1: Overview of Stardust-NExT results , 2013 .

[88]  H. Campins,et al.  An investigation of the nucleus and coma of Comet P/Arend-Rigaux , 1985 .

[89]  G. Rieke,et al.  The NASA Spitzer Space Telescope. , 2007, The Review of scientific instruments.

[90]  M. Hanner,et al.  On the definition of albedo and application to irregular particles , 1981 .

[91]  Alan W. Harris,et al.  A Thermal Model for Near-Earth Asteroids , 1998 .

[92]  C. Woodward,et al.  DUST IN COMET C/2007 N3 (LULIN) , 2011, 1103.0593.

[93]  C. Woodward,et al.  ABSORPTION EFFICIENCIES OF FORSTERITE. I. DISCRETE DIPOLE APPROXIMATION EXPLORATIONS IN GRAIN SHAPE AND SIZE , 2013, 1302.0788.

[94]  J. R. Houck,et al.  The Infrared Spectrograph (IRS) on the Spitzer Space Telescope , 2004, astro-ph/0406167.

[95]  Dean C. Hines,et al.  Spitzer Observations of the Dust Coma and Nucleus of 29P/Schwassmann-Wachmann 1 , 2004 .

[96]  A. Tielens,et al.  Airborne and groundbased spectrophotometry of comet P/Halley from 5-13 micrometers. , 1987, Astronomy and astrophysics.

[97]  David Makovoz,et al.  Mosaicking with MOPEX , 2005 .

[98]  Michael E. Zolensky,et al.  The Tagish Lake Meteorite: A Possible Sample from a D-Type Asteroid , 2001, Science.

[99]  N. Moskovitz,et al.  Mineralogy and thermal properties of V-type Asteroid 956 Elisa: Evidence for diogenitic material from the Spitzer IRS (5–35 μm) spectrum , 2011 .

[100]  Rachel E. Anderson,et al.  The Mid-Infrared Instrument for the James Webb Space Telescope, X: Operations and Data Reduction , 2015, 1512.03000.

[101]  J. Salisbury,et al.  The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals , 1992 .

[102]  J. Enriquez,et al.  Multiple asteroid systems: Dimensions and thermal properties from Spitzer Space Telescope and ground-based observations , 2012, 1604.05384.

[103]  Dale P. Cruikshank,et al.  Thermal emission spectroscopy (5.2–38 μm) of three Trojan asteroids with the Spitzer Space Telescope: Detection of fine-grained silicates , 2006 .

[104]  C. Woodward,et al.  Grain Properties of Comet C/1995 O1 (Hale-Bopp) , 2001 .

[105]  J. Licandro,et al.  Thermal properties, sizes, and size distribution of Jupiter-family cometary nuclei , 2013, 1307.6191.

[106]  Humberto Campins,et al.  Low Perihelion Near-Earth Asteroids , 2008 .