Morphological effects on the excitation of surface waves in the grating-coupled configuration

Grating-coupled excitation of surface plasmon-polariton waves guided by the interface of a metal and an anisotropic dielectric material evinces morphological effects arising from the divergence of structural anisotropy (grating) from constitutive anisotropy (dielectric material). Even if the metal is replaced by an isotropic dielectric ma- terial, the same effects are seen in the excitation of Dyakonov surface waves. The morphological effects vanish with constitutive anisotropy, as exemplified with a columnar thin film (CTF) as the dielectric material. Both p-polarized and s-polarized incident plane waves can excite the surface plasmon-polariton (SPP) waves as well as Dyakonov surface waves, provided that either the plane of incidence and/or the morphologically significant plane of the CTF do not coincide with the grating plane.

[1]  Switching terahertz wave with grating-coupled Kretschmann configuration. , 2017, Optics express.

[2]  A. Lakhtakia,et al.  Morphological effects on surface-plasmon-polariton waves at the planar interface of a metal and a columnar thin film , 2008 .

[3]  M. Kamran,et al.  Plasmonic Sensor Using a Combination of Grating and Prism Couplings , 2018, Plasmonics.

[4]  Akhlesh Lakhtakia,et al.  Effect of orientation on excitation of surface-plasmon-polariton waves guided by a columnar thin film deposited on a metal grating , 2020 .

[5]  F. Chiadini,et al.  Temperature-mediated transition from Dyakonov–Tamm surface waves to surface-plasmon-polariton waves , 2017, 1707.08993.

[6]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[7]  Tom H. Anderson,et al.  Efficiency enhancement of ultrathin CIGS solar cells by optimal bandgap grading. , 2019, Applied optics.

[8]  J. Homola Surface plasmon resonance based sensors , 2006 .

[9]  M. Dyakonov,et al.  Electromagnetic waves localized at the interface of transparent anisotropic media , 1990 .

[10]  A. Lakhtakia,et al.  Nonreciprocal Dyakonov-wave propagation supported by topological insulators , 2016 .

[11]  Akhlesh Lakhtakia,et al.  Multiple excitations of a surface-plasmon-polariton wave guided by a columnar thin film deposited on a metal grating , 2014 .

[12]  M. Ozaki,et al.  Electric Field Tuning of Plasmonic Absorption of Metallic Grating with Twisted Nematic Liquid Crystal , 2009 .

[13]  A. Lakhtakia,et al.  Surface-plasmonic sensor using a columnar thin film in the grating-coupled configuration [Invited] , 2021, Chinese Optics Letters.

[14]  P. K. Jain,et al.  Information Transfer by Near-Infrared Surface-Plasmon-Polariton Waves on Silver/Silicon Interfaces , 2019, Scientific Reports.

[15]  C. Zapata-Rodriguez,et al.  Propagation of Dyakonon Wave-Packets at the Boundary of Metallodielectric Lattices , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  A. Lakhtakia,et al.  Characteristics of surface plasmon-polariton waves excited on 2D periodically patterned columnar thin films of silver. , 2016, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  L. Torner,et al.  Dyakonov Surface Waves: A Review , 2008 .

[18]  F. Romanato,et al.  Grating-coupled surface plasmon resonance in conical mounting with polarization modulation. , 2012, Optics letters.

[19]  Lynn Marie Anderson Harnessing Surface Plasmons For Solar Energy Conversion , 1983, Other Conferences.

[20]  Anne L Plant,et al.  High resolution surface plasmon resonance imaging for single cells , 2014, BMC Cell Biology.

[21]  A. Lakhtakia,et al.  Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part IV: Canonical problem , 2010, 1002.2435.

[22]  L. Torner,et al.  Hybrid waves guided by ultrathin films , 1995 .

[23]  Qi Hong Wu,et al.  Birefringent Thin Films and Polarizing Elements , 1998 .

[24]  L. Torner,et al.  Nonlinear hybrid waves guided by birefringent interfaces , 1993 .

[25]  L. Barkovsky,et al.  Surface Polaritons at the Planar Interface of Twinned Dielectric Gyrotropic Media , 2008 .

[26]  L. Torner,et al.  Lossless directional guiding of light in dielectric nanosheets using Dyakonov surface waves. , 2014, Nature nanotechnology.

[27]  J. Sambles,et al.  Surface Plasmon-polaritons on an Anisotropic Substrate , 1990 .

[28]  A. Otto Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection , 1968 .

[29]  A. Lakhtakia,et al.  Surface waves with simple exponential transverse decay at a biaxial bicrystalline interface. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[30]  L. Torner,et al.  Observation of Dyakonov Surface Waves , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[31]  L. Torner,et al.  Practical dyakonons. , 2012, Optics letters.

[32]  L. Torner,et al.  Enhanced localization of Dyakonov-like surface waves in left-handed materials , 2006 .

[33]  B. M. Fulk MATH , 1992 .

[34]  T. Mayer,et al.  Experimental excitation of multiple surface-plasmon-polariton waves and waveguide modes in a one-dimensional photonic crystal atop a two-dimensional metal grating , 2015 .

[35]  A. Lakhtakia,et al.  Electromagnetic Surface Waves: A Modern Perspective , 2013 .

[36]  Akhlesh Lakhtakia,et al.  Surface plasmonic polaritonic sensor using a dielectric columnar thin film , 2014 .

[37]  David Artigas,et al.  Dyakonov surface waves in photonic metamaterials. , 2005, Physical review letters.

[38]  L. Barkovsky,et al.  Surface polaritons in symmetry planes of biaxial crystals , 2005 .

[39]  L. Torner,et al.  Polarization conversion spectroscopy of hybrid modes. , 2009, Optics letters.