Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation

[1]  Dmitri K. Gramotnev,et al.  Nanoscale Fabry-Perot interferometer using channel plasmon-polaritons in triangular metallic grooves , 2005 .

[2]  Lukas Novotny,et al.  Light confinement in scanning near-field optical microscopy , 1995 .

[3]  Surface‐polariton propagation for scanning near‐field optical microscopy application , 1999, Journal of microscopy.

[4]  A. Bouhelier,et al.  Plasmon‐coupled tip‐enhanced near‐field optical microscopy , 2003, Journal of microscopy.

[5]  D. Pile,et al.  Channel plasmon-polariton in a triangular groove on a metal surface. , 2004, Optics letters.

[6]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[7]  D. Pile,et al.  Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface , 2004 .

[8]  E. Janunts,et al.  Excitation and propagation of surface plasmon polaritons on the gold covered conical tip , 2006 .

[9]  Gerhard Ertl,et al.  Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. , 2004, Physical review letters.

[10]  A. Kisliuk,et al.  Optical properties and enhancement factors of the tips for apertureless near-field optics , 2006 .

[11]  D. Pile,et al.  Two-dimensionally localized modes of a nanoscale gap plasmon waveguide , 2005 .

[12]  S. Kawata Near-Field Optics and Surface Plasmon Polaritons , 2001 .

[13]  Tatsuhiko Sugiyama,et al.  Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides. , 2005, Optics express.

[14]  Dmitri K. Gramotnev,et al.  Adiabatic nano-focusing of plasmons by sharp metallic wedges , 2006 .

[15]  David J. Bergman,et al.  Enhanced second harmonic generation in a self-similar chain of metal nanospheres , 2005 .

[16]  T. Ebbesen,et al.  Channel plasmon-polariton guiding by subwavelength metal grooves. , 2005, Physical review letters.

[17]  Anatoly V. Zayats,et al.  Near-field photonics: surface plasmon polaritons and localized surface plasmons , 2003 .

[18]  A. Morimoto,et al.  Guiding of a one-dimensional optical beam with nanometer diameter. , 1997, Optics letters.

[19]  W. Denk,et al.  Optical stethoscopy: Image recording with resolution λ/20 , 1984 .

[20]  Novotny,et al.  Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Kh. V. Nerkararyan,et al.  Superfocusing of surface polaritons in the conical structure , 2000 .

[22]  S. Kawata,et al.  Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging. , 2004, Physical review letters.

[23]  J. Krenn,et al.  Watching energy transfer , 2003, Nature materials.

[24]  D. Bergman,et al.  Self-similar chain of metal nanospheres as efficient nanolens , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[25]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[26]  Dmitri K. Gramotnev,et al.  Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach , 2005 .

[27]  Sailing He,et al.  Novel surface plasmon waveguide for high integration. , 2005, Optics express.

[28]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[29]  G. Veronis,et al.  Guided subwavelength plasmonic mode supported by a slot in a thin metal film. , 2005, Optics letters.

[30]  Neil A. Anderson,et al.  Institute of Physics Publishing Journal of Optics A: Pure and Applied Optics Optimal Configurations for Imaging Polarimeters: Impact of Image Noise and Systematic Errors , 2006 .

[31]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[32]  Dmitri K. Gramotnev,et al.  Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides , 2006 .

[33]  D. Pile,et al.  Plasmonic subwavelength waveguides: next to zero losses at sharp bends. , 2005, Optics letters.