Formulation and performance of variational integrators for rotating bodies

Variational integrators are obtained for two mechanical systems whose configuration spaces are, respectively, the rotation group and the unit sphere. In the first case, an integration algorithm is presented for Euler’s equations of the free rigid body, following the ideas of Marsden et al. (Nonlinearity 12:1647–1662, 1999). In the second example, a variational time integrator is formulated for the rigid dumbbell. Both methods are formulated directly on their nonlinear configuration spaces, without using Lagrange multipliers. They are one-step, second order methods which show exact conservation of a discrete angular momentum which is identified in each case. Numerical examples illustrate their properties and compare them with existing integrators of the literature.

[1]  Petr Krysl,et al.  Dynamically equivalent implicit algorithms for the integration of rigid body rotations , 2006 .

[2]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[3]  J. Marsden,et al.  Discrete Euler-Poincaré and Lie-Poisson equations , 1999, math/9909099.

[4]  A. Veselov Integrable discrete-time systems and difference operators , 1988 .

[5]  J. Marsden,et al.  Mechanical integrators derived from a discrete variational principle , 1997 .

[6]  J. Moser,et al.  Discrete versions of some classical integrable systems and factorization of matrix polynomials , 1991 .

[7]  J. C. Simo,et al.  Conserving algorithms for the n dimensional rigid body , 1995 .

[8]  Jerrold E. Marsden,et al.  Geometric, variational integrators for computer animation , 2006, SCA '06.

[9]  Petr Krysl Explicit momentum‐conserving integrator for dynamics of rigid bodies approximating the midpoint Lie algorithm , 2005 .

[10]  J. Kuipers Quaternions and Rotation Sequences , 1998 .

[11]  Mark Austin,et al.  Almost Poisson Integration of Rigid Body Systems , 1993 .

[12]  A. Lew Variational time integrators in computational solid mechanics , 2003 .

[13]  S. Antman Nonlinear problems of elasticity , 1994 .

[14]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model , 1990 .

[15]  D. Allen-Booth,et al.  Classical Mechanics 2nd edn , 1974 .

[16]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[17]  N. McClamroch,et al.  Lie group variational integrators for the full body problem , 2005, math/0508365.

[18]  J. C. Simo,et al.  Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics , 1992 .

[19]  J. Marsden,et al.  Asynchronous Variational Integrators , 2003 .

[20]  J. Argyris An excursion into large rotations , 1982 .

[21]  J. C. Simo,et al.  Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum , 1991 .

[22]  A. Iserles,et al.  Lie-group methods , 2000, Acta Numerica.

[23]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[24]  J. W. Humberston Classical mechanics , 1980, Nature.

[25]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[26]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.