Efficient and reliable hp-FEM estimates for quadratic eigenvalue problems and photonic crystal applications

We present a-posteriori analysis of higher order finite element approximations (hp-FEM) for quadratic Fredholm-valued operator functions. Residual estimates for approximations of the algebraic eigenspaces are derived and we reduce the analysis of the estimator to the analysis of an associated boundary value problem. For the reasons of robustness we also consider approximations of the associated invariant pairs. We show that our estimator inherits the efficiency and reliability properties of the underlying boundary value estimator. As a model problem we consider spectral problems arising in analysis of photonic crystals. In particular, we present an example where a targeted family of eigenvalues cannot be guaranteed to be semisimple. Numerical experiments with hp-FEM show the predicted convergence rates. The measured effectivities of the estimator compare favorably with the performance of the same estimator on the associated boundary value problem. We also present a benchmark estimator, based on the dual weighted residual (DWR) approach, which is more expensive to compute but whose measured effectivities are close to one.

[1]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[2]  C. Engström ON THE SPECTRUM OF A HOLOMORPHIC OPERATOR-VALUED FUNCTION WITH APPLICATIONS TO ABSORPTIVE PHOTONIC CRYSTALS , 2010 .

[3]  Nicholas J. Higham,et al.  NLEVP: A Collection of Nonlinear Eigenvalue Problems , 2013, TOMS.

[4]  R. Mennicken,et al.  Non-Self-Adjoint Boundary Eigenvalue Problems , 2003 .

[5]  Ricardo G. Durán,et al.  A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems , 2003 .

[6]  J. Miller,et al.  Statistics for Analytical Chemistry , 1993 .

[7]  Kurt Busch,et al.  The Wannier function approach to photonic crystal circuits , 2003 .

[8]  Christian Engström,et al.  Spectral approximation of quadratic operator polynomials arising in photonic band structure calculations , 2014, Numerische Mathematik.

[9]  A. Sändig,et al.  Numerische Simulation Auf Massiv Parallelen Rechnern Computation of 3d Vertex Singularities for Linear Elasticity: Error Estimates for a Finite Element Method on Graded Meshes , 2022 .

[10]  Wolf-Jürgen Beyn,et al.  Continuation of Invariant Subspaces for Parameterized Quadratic Eigenvalue Problems , 2009, SIAM J. Matrix Anal. Appl..

[11]  Daniel Kressner,et al.  Perturbation, extraction and refinement of invariant pairs for matrix polynomials , 2011 .

[12]  P. Kuchment Floquet Theory for Partial Differential Equations , 1993 .

[13]  Tosio Kato Perturbation theory for linear operators , 1966 .

[14]  Otto Karma,et al.  Approximation in eigenvalue problems for holomorphic fredholm operator functions I , 1996 .

[15]  P. Solín,et al.  An iterative adaptive hp-FEM method for non-symmetric elliptic eigenvalue problems , 2013, Computing.

[16]  R. Kappeler,et al.  Efficient computation of photonic crystal waveguide modes with dispersive material. , 2010, Optics express.

[17]  L. Trefethen Approximation Theory and Approximation Practice (Other Titles in Applied Mathematics) , 2012 .

[18]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[19]  Rodolfo Rodríguez,et al.  An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations , 2011 .

[20]  E. Sargent,et al.  Behavior of light at photonic crystal interfaces , 2005 .

[21]  R. Verfürth A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations , 1994 .

[22]  J. Osborn Spectral approximation for compact operators , 1975 .

[23]  Barbara I. Wohlmuth,et al.  On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..

[24]  Manfred Möller,et al.  Chapter III - Boundary eigenvalue problems for first order systems , 2003 .

[25]  Ivo Babuska,et al.  The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..

[26]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[27]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[28]  A. Markus,et al.  Introduction to the Spectral Theory of Polynomial Operator Pencils , 2012 .

[29]  Edward H. Sargent,et al.  Photonic crystal heterostructures and interfaces , 2006 .

[30]  Rolf Rannacher,et al.  A posteriori error control for finite element approximations of elliptic eigenvalue problems , 2001, Adv. Comput. Math..

[31]  Rolf Rannacher,et al.  Adaptive FEM for eigenvalue problems with application in hydrodynamic stability analysis , 2006 .

[32]  Otto Karma,et al.  Approximation in eigenvalue problems for holomorphic fredholm operator functions Ii (Convergence Rate) , 1996 .

[33]  K. Schmidt,et al.  Computation of the band structure of two-dimensional photonic crystals with hp finite elements , 2009 .

[34]  H. Elman,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Non-self-adjoint Quadratic Eigenvalue Problem Describing a Fluid-solid Interaction. Part Ii: Analysis of Convergence a Non-self-adjoint Quadratic Eigenvalue Problem Describing a Fluid-solid Interaction Part Ii: Analysis of Convergence , 2022 .

[35]  Stefano Giani,et al.  Adaptive finite element methods for computing band gaps in photonic crystals , 2012, Numerische Mathematik.

[36]  J. Joannopoulos,et al.  Nature of lossy Bloch states in polaritonic photonic crystals , 2004 .

[37]  Kersten Schmidt,et al.  Computations of lossy Bloch waves in two-dimensional photonic crystals , 2009 .

[38]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[39]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[40]  G. M. Vainikko On the speed of convergence of approximate methods in the eigenvalue problem , 1967 .

[41]  I. Gohberg,et al.  AN OPERATOR GENERALIZATION OF THE LOGARITHMIC RESIDUE THEOREM AND THE THEOREM OF ROUCHÉ , 1971 .

[42]  Carsten Carstensen,et al.  An adaptive finite element method with asymptotic saturation for eigenvalue problems , 2014, Numerische Mathematik.

[43]  William G. Kolata,et al.  Approximation in variationally posed eigenvalue problems , 1978 .

[44]  Gennady Shvets,et al.  The complex Bloch bands of a 2D plasmonic crystal displaying isotropic negative refraction. , 2007, Optics express.

[45]  M. Kreĭn,et al.  Introduction to the theory of linear nonselfadjoint operators , 1969 .

[46]  Kersten Schmidt,et al.  A multiscale hp-FEM for 2D photonic crystal bands , 2011, J. Comput. Phys..

[47]  Ricardo G. Durán,et al.  Finite Element Analysis of a Quadratic Eigenvalue Problem Arising in Dissipative Acoustics , 2000, SIAM J. Numer. Anal..

[48]  Stefano Giani,et al.  Benchmark results for testing adaptive finite element eigenvalue procedures , 2012 .

[49]  Markus Richter,et al.  On the Spectrum of an Operator Pencil with Applications to Wave Propagation in Periodic and Frequency Dependent Materials , 2008, SIAM J. Appl. Math..

[50]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[51]  E. Süli,et al.  A note on the design of hp-adaptive finite element methods for elliptic partial differential equations , 2005 .