Destruction thresholds of echogenic liposomes with clinical diagnostic ultrasound.

[1]  C. Holland,et al.  Acoustic Techniques for Assessing the Optison Destruction Threshold , 2006, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine.

[2]  B. Goldberg,et al.  The influence of acoustic transmit parameters on the destruction of contrast microbubbles in vitro , 2006, Physics in medicine and biology.

[3]  Detlef Lohse,et al.  A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture , 2005 .

[4]  M. Versluis,et al.  Ultrasound-induced gas release from contrast agent microbubbles , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[5]  Nico de Jong,et al.  High-speed optical observations of contrast agent destruction. , 2005, Ultrasound in medicine & biology.

[6]  Raffi Bekeredjian,et al.  Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine. , 2005, Journal of the American College of Cardiology.

[7]  A. Alexandrov,et al.  Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. , 2004, The New England journal of medicine.

[8]  Nico de Jong,et al.  Ultrasound-induced microbubble coalescence. , 2004, Ultrasound in medicine & biology.

[9]  P. Dayton,et al.  Targeted imaging using ultrasound contrast agents , 2004, IEEE Engineering in Medicine and Biology Magazine.

[10]  E. Unger,et al.  Therapeutic applications of lipid-coated microbubbles. , 2004, Advanced drug delivery reviews.

[11]  W. McDicken,et al.  An in vitro study of a microbubble contrast agent using a clinical ultrasound imaging system. , 2004, Physics in medicine and biology.

[12]  In vitro characterization of liposomes and Optison by acoustic scattering at 3.5 MHz. , 2003, Ultrasound in medicine & biology.

[13]  A. Brayman,et al.  A comparison of the fragmentation thresholds and inertial cavitation doses of different ultrasound contrast agents. , 2003, The Journal of the Acoustical Society of America.

[14]  K. Ferrara,et al.  Dynamics and fragmentation of thick-shelled microbubbles , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[15]  K V Ramnarine,et al.  Understanding the limitations of ultrasonic backscatter measurements from microbubble populations. , 2002, Physics in medicine and biology.

[16]  C. Holland,et al.  Thrombolytic effects of 120‐kHz and 1‐MHz ultrasound and tissue plasminogen activator on porcine whole blood clots , 2002 .

[17]  D. McPherson,et al.  Left Ventricular Thrombus Enhancement After Intravenous Injection of Echogenic Immunoliposomes: Studies in a New Experimental Model , 2002, Circulation.

[18]  Lawrence A Crum,et al.  The disappearance of ultrasound contrast bubbles: observations of bubble dissolution and cavitation nucleation. , 2002, Ultrasound in medicine & biology.

[19]  D. McPherson,et al.  Physical correlates of the ultrasonic reflectivity of lipid dispersions suitable as diagnostic contrast agents. , 2002, Ultrasound in medicine & biology.

[20]  Lars Hoff,et al.  Acoustic Characterization of Contrast Agents for Medical Ultrasound Imaging , 2001, Springer Netherlands.

[21]  W N McDicken,et al.  Contrast agent stability: a continuous B-mode imaging approach. , 2001, Ultrasound in medicine & biology.

[22]  Flemming Forsberg,et al.  Ultrasound Contrast Agents: Basic Principles and Clinical Applications , 2001 .

[23]  P. Dayton,et al.  Threshold of fragmentation for ultrasonic contrast agents. , 2001, Journal of biomedical optics.

[24]  R. Macdonald,et al.  Relationship between turbidity of lipid vesicle suspensions and particle size. , 2001, Analytical biochemistry.

[25]  Michel Claudon,et al.  Ultrasound contrast agents: properties, principles of action, tolerance, and artifacts , 2001, European Radiology.

[26]  P. Dayton,et al.  Mechanisms of contrast agent destruction , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[27]  K. Ohmori,et al.  Enhancement of ultrasound-accelerated thrombolysis by echo contrast agents: dependence on microbubble structure. , 1999, Ultrasound in medicine & biology.

[28]  D. McPherson,et al.  In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. , 1999, Journal of the American College of Cardiology.

[29]  A. Kabalnov,et al.  Dissolution of multicomponent microbubbles in the bloodstream: 1. Theory. , 1998, Ultrasound in medicine & biology.

[30]  D. McPherson,et al.  In vitro targeting of antibody-conjugated echogenic liposomes for site-specific ultrasonic image enhancement. , 1997, Journal of pharmaceutical sciences.

[31]  T. Porter,et al.  Increased ultrasound contrast and decreased microbubble destruction rates with triggered ultrasound imaging. , 1996, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[32]  R. Apfel,et al.  Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. , 1991, Ultrasound in medicine & biology.

[33]  R. D. Venter,et al.  THE STABILITY OF GAS BUBBLES IN LIQUID‐GAS SOLUTIONS * , 1983 .

[34]  C. Devin,et al.  SURVEY OF THERMAL, RADIATION, AND VISCOUS DAMPING OF PULSATING AIR BUBBLES IN WATER , 1959 .

[35]  W. P. Mason,et al.  Properties of Liquids at High Sound Pressure , 1947 .

[36]  M. Minnaert XVI.On musical air-bubbles and the sounds of running water , 1933 .

[37]  M. Minnarert,et al.  Musical air-bubbles and the sound of running water , 1933 .