Optical Systems with Resolving Powers Exceeding the Classical Limit

The fundamental invariant of an optical system is the number N of degrees of freedom of the message it can transmit. The spatial bandwidth of the system can be increased over the classical limit by reducing one of the other constituent factors of N. As examples of this invariance theorem N=const. established in Part I of this series [ J. Opt. Soc. Am.56, 1463 ( 1966)], we discuss (a) a system whose spatial-bandwidth increase is achieved by a proportional reduction of its temporal bandwidth, and (b) the airborne synthetic-aperture, terrain-mapping radar, whose spatial resolution comes from exploitation of the temporal degrees of freedom of the received signal. The increase of the spatial bandwidth beyond the classical limit is, however, limited by the appearance of evanescent waves.The number of degrees of freedom of the object wave field stored in a hologram is discussed. The storage capacity of the photographic plate, which is proportional to its size times its spatial cutoff frequency, is fully exploited only by single-sideband Fraunhofer but not by single-sideband Fresnel holograms.

[1]  A. Lohmann,et al.  Behandlung der optischen Abbildung durch Entwicklung nach ebenen Wellen , 1955 .

[2]  G. D. Francia Resolving Power and Information , 1955 .

[3]  A. Lohmann Optische Einseitenbandübertragung Angewandt auf das Gabor-Mikroskop , 1956 .

[4]  Donald M. MacKay,et al.  The Structural Information-Capacity of Optical Instruments , 1958, Inf. Control..

[5]  K. Miyamoto On Gabor’s Expansion Theorem* , 1960 .

[6]  E. Leith,et al.  A High-Resolution Radar Combat-Surveillance System , 1961, IRE Transactions on Military Electronics.

[7]  J. P. Ruina,et al.  Some Early Developments in Synthetic Aperture Radar Systems , 1962, IRE Transactions on Military Electronics.

[8]  L. J. Cutrona,et al.  A Comparison of Techniques for Achieving Fine Azimuth Resolution , 1962, IRE Transactions on Military Electronics.

[9]  E. Leith,et al.  Reconstructed Wavefronts and Communication Theory , 1962 .

[10]  Notizen: Ein Verfahren zur optischen Abbildung mit einem über die klassische Auflösungsgrenze hinausgehenden Auflösungsvermögen , 1963 .

[11]  G. W. Stroke Lensless Fourier-Transform Method for Optical Holography , 1965 .

[12]  J. Winthrop,et al.  X-ray microscopy by successive fourier transformation , 1965 .

[13]  G. Parrent,et al.  Space-Bandwidth Theorem for Holograms , 1966 .

[14]  E. Leith,et al.  Holographic Imagery Through Diffusing Media , 1966 .

[15]  W. Lukosz,et al.  Experiments on Superresolution Imaging of a Reduced Object Field , 1967 .