Synthesis and characterization of iron-doped/substituted calcium hydroxyapatite from seashells Macoma balthica (L.)

[1]  A. Nakahira,et al.  Preparation of iron doped hydroxyapatite microsphere by mist process , 2014 .

[2]  Thomas Chung-Kuang Yang,et al.  Calcium hydroxyapatite/whitlockite obtained from dairy products: Simple, environmentally benign and green preparation technology , 2014 .

[3]  Yoshinobu Watanabe,et al.  Bone regeneration in a massive rat femur defect through endochondral ossification achieved with chondrogenically differentiated MSCs in a degradable scaffold. , 2014, Biomaterials.

[4]  F. Yakuphanoglu,et al.  Dielectric properties of Fe doped hydroxyapatite prepared by sol-gel method , 2014 .

[5]  I. Cacciotti,et al.  Fe-doped hydroxyapatite coatings for orthopedic and dental implant applications , 2014 .

[6]  R. Traksmaa,et al.  Synthesis of Bio-Cation-Substituted Ca-Apatites by Precipitation , 2014 .

[7]  K. Gross,et al.  Effect of processing conditions on the crystallinity and structure of carbonated calcium hydroxyapatite (CHAp) , 2014 .

[8]  K. Mohite,et al.  Improved gas sensing and dielectric properties of Fe doped hydroxyapatite thick films: Effect of molar concentrations , 2014 .

[9]  C. Sekar,et al.  Development of amperometric L-tyrosine sensor based on Fe-doped hydroxyapatite nanoparticles. , 2014, Materials science & engineering. C, Materials for biological applications.

[10]  K. Mohite,et al.  Fe doped hydroxyapatite thick films modified via swift heavy ion irradiation for CO and CO2 gas sensing application , 2014 .

[11]  A. Bădănoiu,et al.  Synthesis, characterization and bioevaluation of partially stabilized cements for medical applications , 2013 .

[12]  A. Nakahira,et al.  Influence of Fe addition to hydroxyapatite by hydrothermal process , 2013 .

[13]  J. Gómez-Morales,et al.  Magnetic bioactive and biodegradable hollow fe-doped hydroxyapatite coated poly(l -lactic) acid micro-nanospheres , 2013 .

[14]  A. Nakahira,et al.  Influence of Fe addition to hydroxyapatite by aqueous solution process , 2013 .

[15]  L. Kavitha,et al.  A novel green template assisted synthesis of hydroxyapatite nanorods and their spectral characterization. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[16]  V. Mikli,et al.  pH impact on the sol-gel preparation of calcium hydroxyapatite, Ca10(PO4)6(OH)2, using a novel complexing agent, DCTA , 2010 .

[17]  C. Balázsi,et al.  Nano-hydroxyapatite preparation from biogenic raw materials , 2010 .

[18]  P. Harikrishna Varma,et al.  Nano iron oxide–hydroxyapatite composite ceramics with enhanced radiopacity , 2010, Journal of materials science. Materials in medicine.

[19]  İ. Girgin,et al.  Synthesis of hydroxyapatite by using calcium carbonate and phosphoric acid in various water-ethanol solvent systems , 2009 .

[20]  Julian R. Jones New trends in bioactive scaffolds: The importance of nanostructure , 2009 .

[21]  Erik N. Taylor,et al.  Increased osteoblast density in the presence of novel calcium phosphate coated magnetic nanoparticles , 2008, Nanotechnology.

[22]  Molly M. Stevens,et al.  Biomaterials for bone tissue engineering , 2008 .

[23]  G. Walker,et al.  Low-pressure synthesis and characterisation of hydroxyapatite derived from mineralise red algae , 2008 .

[24]  D. Leslie-Pelecky,et al.  Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. , 2008, Molecular pharmaceutics.

[25]  Anna Tampieri,et al.  Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour , 2008, Journal of materials science. Materials in medicine.

[26]  K. Vecchio,et al.  Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants. , 2007, Acta biomaterialia.

[27]  Alidad Amirfazli,et al.  Magnetic nanoparticles hit the target , 2007, Nature Nanotechnology.

[28]  D. Medeiros,et al.  Iron Restriction Negatively Affects Bone in Female Rats and Mineralization of hFOB Osteoblast Cells , 2006, Experimental biology and medicine.

[29]  J. Reeve,et al.  Dietary determinants of post-menopausal bone loss at the lumbar spine: a possible beneficial effect of iron , 2006, Osteoporosis International.

[30]  Eleftherios Tsiridis,et al.  Bone substitutes: an update. , 2005, Injury.

[31]  J. Shea,et al.  Skeletal function and structure: implications for tissue-targeted therapeutics. , 2005, Advanced drug delivery reviews.

[32]  D. Richardson,et al.  Iron chelators with high antiproliferative activity up-regulate the expression of a growth inhibitory and metastasis suppressor gene: a link between iron metabolism and proliferation. , 2004, Blood.

[33]  L. Houtkooper,et al.  Dietary iron is associated with bone mineral density in healthy postmenopausal women. , 2003, The Journal of nutrition.

[34]  S. Mann,et al.  The potential of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrate skeletons. , 2002, Bone.

[35]  Larry L Hench,et al.  Third-Generation Biomedical Materials , 2002, Science.

[36]  B. Ben-Nissan,et al.  Production and analysis of hydroxyapatite from Australian corals via hydrothermal process , 2001 .

[37]  A. Meunier,et al.  Tissue-engineered bone regeneration , 2000, Nature Biotechnology.

[38]  David L. Kaplan,et al.  Mollusc shell structures: novel design strategies for synthetic materials , 1998 .