Functional Data Visualization

[1]  Ying Sun,et al.  Surface boxplots , 2014, Stat.

[2]  Jeff Goldsmith,et al.  Interactive graphics for functional data analyses , 2016, Stat.

[3]  Marc G. Genton,et al.  Robust functional multivariate analysis of variance with environmental applications , 2020, Environmetrics.

[4]  Mikko Sams,et al.  Functional MRI of the vocalization-processing network in the macaque brain , 2015, Front. Neurosci..

[5]  E. Ronchetti,et al.  Saddlepoint approximations for short and long memory time series: A frequency domain approach , 2019 .

[6]  Hans-Georg Müller Functional Data Analysis. , 2011 .

[7]  Ying Sun,et al.  Functional outlier detection and taxonomy by sequential transformations , 2018, Comput. Stat. Data Anal..

[8]  Ying Sun,et al.  A Decomposition of Total Variation Depth for Understanding Functional Outliers , 2019, Technometrics.

[9]  Sara López-Pintado,et al.  Simplicial band depth for multivariate functional data , 2014, Adv. Data Anal. Classif..

[10]  Ross T. Whitaker,et al.  Curve Boxplot: Generalization of Boxplot for Ensembles of Curves , 2014, IEEE Transactions on Visualization and Computer Graphics.

[11]  Marc G. Genton,et al.  Robust depth-based estimation of the functional autoregressive model , 2019, Comput. Stat. Data Anal..

[12]  Marc G. Genton,et al.  A tilting approach to ranking influence , 2016 .

[13]  Marc G. Genton,et al.  Trajectory functional boxplots , 2019, Stat.

[14]  Sebastian Kurtek,et al.  A Geometric Approach to Visualization of Variability in Functional Data , 2017, 1702.01183.

[15]  Marc G. Genton,et al.  Visualizing spatiotemporal models with virtual reality: from fully immersive environments to applications in stereoscopic view , 2019, Journal of the Royal Statistical Society: Series A (Statistics in Society).

[16]  Marc G. Genton,et al.  Directional outlyingness for multivariate functional data , 2016, Comput. Stat. Data Anal..

[17]  Mia Hubert,et al.  A Measure of Directional Outlyingness With Applications to Image Data and Video , 2016, 1608.05012.

[18]  Marc G. Genton,et al.  Adjusted functional boxplots for spatio‐temporal data visualization and outlier detection , 2012 .

[19]  J. Romo,et al.  On the Concept of Depth for Functional Data , 2009 .

[20]  Rob J Hyndman,et al.  Rainbow Plots, Bagplots, and Boxplots for Functional Data , 2010 .

[21]  Ying Sun,et al.  Visuanimation in statistics + , 2015 .

[22]  Mia Hubert,et al.  Multivariate and functional classification using depth and distance , 2017, Adv. Data Anal. Classif..

[23]  Marc G. Genton,et al.  Functional Median Polish , 2012, Journal of Agricultural, Biological, and Environmental Statistics.

[24]  D. Nychka,et al.  Exact fast computation of band depth for large functional datasets: How quickly can one million curves be ranked? , 2012 .

[25]  Ying Sun,et al.  Visualization and assessment of spatio-temporal covariance properties , 2017 .

[26]  Carolina Euán,et al.  Directional Spectra-Based Clustering for Visualizing Patterns of Ocean Waves and Winds , 2019, Journal of Computational and Graphical Statistics.

[27]  Francesca Ieva,et al.  Depth Measures for Multivariate Functional Data , 2013 .

[28]  Marc G. Genton,et al.  Multivariate Functional Data Visualization and Outlier Detection , 2017, Journal of Computational and Graphical Statistics.

[29]  Michael L. Stein,et al.  A stochastic space-time model for intermittent precipitation occurrences , 2016, 1602.02902.

[30]  Juan Romo,et al.  Shape outlier detection and visualization for functional data: the outliergram. , 2013, Biostatistics.

[31]  M. Hubert,et al.  Multivariate Functional Halfspace Depth , 2012 .

[32]  Wenlin Dai,et al.  Functional boxplots for multivariate curves , 2018 .

[33]  Vijayan N. Nair,et al.  Extremal Depth for Functional Data and Applications , 2015, 1511.00128.