The use of permutation representations in structural computations in large finite matrix groups

Abstract We determine the minimal degree permutation representations of all finite groups with trivial soluble radical, and describe applications to structural computations in large finite matrix groups that use the output of the CompositionTree algorithm. We also describe how this output can be used to help find an effective base and strong generating set for such groups. We have implemented the resulting algorithms in Magma , and we report on their performance.

[1]  Gregory Butler,et al.  The Schreier algorithm for matrix groups , 1976, SYMSAC '76.

[2]  C. Sims Computational methods in the study of permutation groups , 1970 .

[3]  V. D. Mazurov,et al.  Minimal permutation representations of finite simple orthogonal groups , 1995 .

[4]  V. D. Mazurov Minimal permutation representations of finite simple classical groups. Special linear, symplectic, and unitary groups , 1993 .

[5]  William R. Unger,et al.  Computing the character table of a finite group , 2006, J. Symb. Comput..

[6]  Derek F. Holt,et al.  Computing the Subgroups of a Permutation Group , 2001, J. Symb. Comput..

[7]  A. V. Vasilyev,et al.  Minimal permutation representations of finite simple exceptional groups of typesG2 andF4 , 1996 .

[8]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[9]  László Babai,et al.  Polynomial-time theory of matrix groups , 2009, STOC '09.

[10]  M. Liebeck,et al.  On the Orders of Maximal Subgroups of the Finite Exceptional Groups of Lie Type , 1987 .

[11]  I. G. MacDonald,et al.  Lectures on Lie Groups and Lie Algebras: Simple groups of Lie type , 1995 .

[12]  Dane L. Flannery,et al.  Recognizing finite matrix groups over infinite fields , 2013, J. Symb. Comput..

[13]  Martin W. Liebeck,et al.  The Subgroup Structure of the Finite Classical Groups , 1990 .

[14]  Derek F. Holt,et al.  A practical model for computation with matrix groups , 2015, J. Symb. Comput..

[15]  E. O'Brien,et al.  Handbook of Computational Group Theory , 2005 .

[16]  Gunter Malle,et al.  Reliability and reproducibility of Atlas information , 2016, 1603.08650.

[17]  Cheryl E. Praeger,et al.  On minimal faithful permutation representations of finite groups , 2000, Bulletin of the Australian Mathematical Society.

[18]  Alexander Hulpke Computing conjugacy classes of elements in matrix groups , 2013 .

[19]  A. V. Vasilyev,et al.  Minimal permutation representations of finite simple exceptional twisted groups , 1998 .

[20]  Bruce N. Cooperstein,et al.  Minimal degree for a permutation representation of a classical group , 1978 .

[21]  Ákos Seress,et al.  A data structure for a uniform approach to computations with finite groups , 2006, ISSAC '06.

[22]  Scott H. Murray,et al.  Selecting Base Points for the Schreier-Sims Algorithm for Matrix Groups , 1995, J. Symb. Comput..

[23]  Derek F. Holt,et al.  Computing subgroups of bounded index in a finite group , 2005, J. Symb. Comput..

[24]  Pablo Spiga,et al.  On the maximum orders of elements of finite almost simple groups and primitive permutation groups , 2013, 1301.5166.

[25]  Derek F. Holt,et al.  Computing maximal subgroups of finite groups , 2004, J. Symb. Comput..

[26]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .