A Stabilized Finite Volume Element Formulation for Sedimentation-Consolidation Processes
暂无分享,去创建一个
[1] Emmanuel Creusé,et al. An hybrid finite volume-finite element method for variable density incompressible flows , 2008, J. Comput. Phys..
[2] A. Ern,et al. Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .
[3] Frédéric Valentin,et al. A stabilized finite-element method for the Stokes problem including element and edge residuals , 2007 .
[4] O. A. Ladyzhenskai︠a︡,et al. Linear and Quasi-linear Equations of Parabolic Type , 1995 .
[5] Francesco Pirozzi,et al. A generalized settling approach in the numerical modeling of sedimentation tanks , 1998 .
[6] Zhangxin Chen,et al. ANALYSIS OF A STABILIZED FINITE VOLUME METHOD FOR THE TRANSIENT STOKES EQUATIONS , 2009 .
[7] M. S. Nigam,et al. Numerical simulation of buoyant mixture flows , 2003 .
[8] L. Franca,et al. Stabilized Finite Element Methods , 1993 .
[9] M. Ungarish,et al. Hydrodynamics of Suspensions , 1993 .
[10] F. Boyer,et al. Discrete duality finite volume schemes for Leray−Lions−type elliptic problems on general 2D meshes , 2007 .
[11] Chi-Wang Shu,et al. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..
[12] Stefan Diehl. Dynamic and Steady-State Behavior of Continuous Sedimentation , 1997, SIAM J. Appl. Math..
[13] Chunjia Bi,et al. A discontinuous finite volume element method for second‐order elliptic problems , 2012 .
[14] Monique Dauge,et al. Spectral Methods for Axisymmetric Domains , 1999 .
[15] Masahisa Tabata,et al. A stabilized finite element method for the Rayleigh–Bénard equations with infinite Prandtl number in a spherical shell , 2000 .
[16] B. Mercier,et al. Résolution d’un problème aux limites dans un ouvert axisymétrique par éléments finis en $r, z$ et séries de Fourier en $\theta $ , 1982 .
[17] J. H. Carneiro de Araujo,et al. A stable finite element method for the axisymmetric three-field Stokes system , 1998 .
[18] Alberto Guardone,et al. Finite element/volume solution to axisymmetric conservation laws , 2007, J. Comput. Phys..
[19] M. Rudman,et al. Macroscopic dynamics of flocculated colloidal suspensions , 2010 .
[20] Zhiqiang Cai,et al. On the finite volume element method , 1990 .
[21] Raimund Bürger,et al. Sedimentation and Thickening , 1999 .
[22] S. Svoronos,et al. One-dimensional modeling of secondary clarifiers using a concentration and feed velocity-dependent dispersion coefficient , 1996 .
[23] Raimund Bürger,et al. Strongly Degenerate Parabolic-Hyperbolic Systems Modeling Polydisperse Sedimentation with Compression , 2003, SIAM J. Appl. Math..
[24] Raimund Bürger,et al. Second-order schemes for conservation laws with discontinuous flux modelling clarifier–thickener units , 2010, Numerische Mathematik.
[25] Jacques Rappaz,et al. Numerical simulation of Rhone's glacier from 1874 to 2100 , 2008 .
[26] James L. Barnard,et al. Secondary settling tanks : theory, modelling, design and operation , 1997 .
[27] Mark A. Christon,et al. Computational predictability of time‐dependent natural convection flows in enclosures (including a benchmark solution) , 2002 .
[28] E. M. Tory,et al. Sedimentation of Small Particles in a Viscous Fluid , 1996 .
[29] J. Z. Zhu,et al. The finite element method , 1977 .
[30] G. J. Kynch. A theory of sedimentation , 1952 .
[31] Rekha Ranjana Rao,et al. Instabilities during batch sedimentation in geometries containing obstacles: A numerical and experimental study , 2007 .
[32] Peter A. Wilderer,et al. Velocity and solids distribution in circular secondary clarifiers: Full scale measurements and numerical modelling , 1998 .
[33] Raphaèle Herbin,et al. An unconditionally stable finite element-finite volume pressure correction scheme for the drift-flux model , 2010 .
[34] Béatrice Rivière,et al. Primal Discontinuous Galerkin Methods for Time-Dependent Coupled Surface and Subsurface Flow , 2009, J. Sci. Comput..
[35] K. Parchevsky,et al. Numerical simulation of sedimentation in the presence of 2D compressible convection and reconstruction of the particle-radius distribution function , 2001 .
[36] Stefan Diehl,et al. The solids-flux theory--confirmation and extension by using partial differential equations. , 2008, Water research.
[37] D. McLachlan,et al. Equations for the conductivity of macroscopic mixtures , 1986 .
[38] Padmanabhan Seshaiyer,et al. FINITE DIFFERENCE METHODS FOR COUPLED FLOW INTERACTION TRANSPORT MODELS , 2009 .
[39] Universit́e P. Czanne,et al. Analysis of a finite-volume – finite-element scheme for a nuclear transport model , 2011 .
[40] Frédéric Hecht,et al. An Efficient Discretization of the Navier–Stokes Equations in an Axisymmetric Domain. Part 1: The Discrete Problem and its Numerical Analysis , 2006, J. Sci. Comput..
[41] D. Kleine,et al. Finite element analysis of flows in secondary settling tanks , 2005 .
[42] Jens Markus Melenk,et al. On the Suboptimality of the p-Version Interior Penalty Discontinuous Galerkin Method , 2010, J. Sci. Comput..
[43] G. Ekama,et al. Assessing the applicability of the 1D flux theory to full-scale secondary settling tank design with a 2D hydrodynamic model. , 2004, Water research.
[44] J. Reddy,et al. The Finite Element Method in Heat Transfer and Fluid Dynamics , 1994 .
[45] Benjamin Stamm,et al. Interior Penalty Continuous and Discontinuous Finite Element Approximations of Hyperbolic Equations , 2010, J. Sci. Comput..
[46] Raytcho D. Lazarov,et al. A finite volume element method for a non-linear elliptic problem , 2005, Numer. Linear Algebra Appl..
[47] Fayssal Benkhaldoun,et al. Solution of the Sediment Transport Equations Using a Finite Volume Method Based on Sign Matrix , 2009, SIAM J. Sci. Comput..
[48] A. Michaels,et al. Settling Rates and Sediment Volumes of Flocculated Kaolin Suspensions , 1962 .
[49] Endre Süli,et al. DISCONTINUOUS GALERKIN METHODS FOR FIRST-ORDER HYPERBOLIC PROBLEMS , 2004 .
[50] Stefan Diehl,et al. Operating charts for continuous sedimentation IV: limitations for control of dynamic behaviour , 2008 .
[51] Raimund Bürger,et al. Model equations for gravitational sedimentation-consolidation processes , 2000 .
[52] Jacques Rappaz,et al. International Journal of C 2009 Institute for Scientific Numerical Analysis and Modeling Computing and Information Scientific Computing for Aluminum Production , 2022 .
[53] Christine Bernardi,et al. Weighted Clément operator and application to the finite element discretization of the axisymmetric Stokes problem , 2006, Numerische Mathematik.
[54] Alfio Quarteroni,et al. Analysis of a finite volume element method for the Stokes problem , 2011, Numerische Mathematik.
[55] Timothy A. Davis,et al. An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .