A Stabilized Finite Volume Element Formulation for Sedimentation-Consolidation Processes

A model of sedimentation-consolidation processes in so-called clarifier-thickener units is given by a parabolic equation describing the evolution of the local solids concentration coupled with a version of the Stokes system for an incompressible fluid describing the motion of the mixture. In cylindrical coordinates, and if an axially symmetric solution is assumed, the original problem reduces to two space dimensions. This poses the difficulty that the subspaces for the construction of a numerical scheme involve weighted Sobolev spaces. A novel finite volume element method is introduced for the spatial discretization, where the velocity field and the solids concentration are discretized on two different dual meshes. The method is based on a stabilized discontinuous Galerkin formulation for the concentration field, and a multiscale stabilized pair of $\mathbb{P}_1$-$\mathbb{P}_1$ elements for velocity and pressure, respectively. Numerical experiments illustrate properties of the model and the satisfactory p...

[1]  Emmanuel Creusé,et al.  An hybrid finite volume-finite element method for variable density incompressible flows , 2008, J. Comput. Phys..

[2]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[3]  Frédéric Valentin,et al.  A stabilized finite-element method for the Stokes problem including element and edge residuals , 2007 .

[4]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .

[5]  Francesco Pirozzi,et al.  A generalized settling approach in the numerical modeling of sedimentation tanks , 1998 .

[6]  Zhangxin Chen,et al.  ANALYSIS OF A STABILIZED FINITE VOLUME METHOD FOR THE TRANSIENT STOKES EQUATIONS , 2009 .

[7]  M. S. Nigam,et al.  Numerical simulation of buoyant mixture flows , 2003 .

[8]  L. Franca,et al.  Stabilized Finite Element Methods , 1993 .

[9]  M. Ungarish,et al.  Hydrodynamics of Suspensions , 1993 .

[10]  F. Boyer,et al.  Discrete duality finite volume schemes for Leray−Lions−type elliptic problems on general 2D meshes , 2007 .

[11]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[12]  Stefan Diehl Dynamic and Steady-State Behavior of Continuous Sedimentation , 1997, SIAM J. Appl. Math..

[13]  Chunjia Bi,et al.  A discontinuous finite volume element method for second‐order elliptic problems , 2012 .

[14]  Monique Dauge,et al.  Spectral Methods for Axisymmetric Domains , 1999 .

[15]  Masahisa Tabata,et al.  A stabilized finite element method for the Rayleigh–Bénard equations with infinite Prandtl number in a spherical shell , 2000 .

[16]  B. Mercier,et al.  Résolution d’un problème aux limites dans un ouvert axisymétrique par éléments finis en $r, z$ et séries de Fourier en $\theta $ , 1982 .

[17]  J. H. Carneiro de Araujo,et al.  A stable finite element method for the axisymmetric three-field Stokes system , 1998 .

[18]  Alberto Guardone,et al.  Finite element/volume solution to axisymmetric conservation laws , 2007, J. Comput. Phys..

[19]  M. Rudman,et al.  Macroscopic dynamics of flocculated colloidal suspensions , 2010 .

[20]  Zhiqiang Cai,et al.  On the finite volume element method , 1990 .

[21]  Raimund Bürger,et al.  Sedimentation and Thickening , 1999 .

[22]  S. Svoronos,et al.  One-dimensional modeling of secondary clarifiers using a concentration and feed velocity-dependent dispersion coefficient , 1996 .

[23]  Raimund Bürger,et al.  Strongly Degenerate Parabolic-Hyperbolic Systems Modeling Polydisperse Sedimentation with Compression , 2003, SIAM J. Appl. Math..

[24]  Raimund Bürger,et al.  Second-order schemes for conservation laws with discontinuous flux modelling clarifier–thickener units , 2010, Numerische Mathematik.

[25]  Jacques Rappaz,et al.  Numerical simulation of Rhone's glacier from 1874 to 2100 , 2008 .

[26]  James L. Barnard,et al.  Secondary settling tanks : theory, modelling, design and operation , 1997 .

[27]  Mark A. Christon,et al.  Computational predictability of time‐dependent natural convection flows in enclosures (including a benchmark solution) , 2002 .

[28]  E. M. Tory,et al.  Sedimentation of Small Particles in a Viscous Fluid , 1996 .

[29]  J. Z. Zhu,et al.  The finite element method , 1977 .

[30]  G. J. Kynch A theory of sedimentation , 1952 .

[31]  Rekha Ranjana Rao,et al.  Instabilities during batch sedimentation in geometries containing obstacles: A numerical and experimental study , 2007 .

[32]  Peter A. Wilderer,et al.  Velocity and solids distribution in circular secondary clarifiers: Full scale measurements and numerical modelling , 1998 .

[33]  Raphaèle Herbin,et al.  An unconditionally stable finite element-finite volume pressure correction scheme for the drift-flux model , 2010 .

[34]  Béatrice Rivière,et al.  Primal Discontinuous Galerkin Methods for Time-Dependent Coupled Surface and Subsurface Flow , 2009, J. Sci. Comput..

[35]  K. Parchevsky,et al.  Numerical simulation of sedimentation in the presence of 2D compressible convection and reconstruction of the particle-radius distribution function , 2001 .

[36]  Stefan Diehl,et al.  The solids-flux theory--confirmation and extension by using partial differential equations. , 2008, Water research.

[37]  D. McLachlan,et al.  Equations for the conductivity of macroscopic mixtures , 1986 .

[38]  Padmanabhan Seshaiyer,et al.  FINITE DIFFERENCE METHODS FOR COUPLED FLOW INTERACTION TRANSPORT MODELS , 2009 .

[39]  Universit́e P. Czanne,et al.  Analysis of a finite-volume – finite-element scheme for a nuclear transport model , 2011 .

[40]  Frédéric Hecht,et al.  An Efficient Discretization of the Navier–Stokes Equations in an Axisymmetric Domain. Part 1: The Discrete Problem and its Numerical Analysis , 2006, J. Sci. Comput..

[41]  D. Kleine,et al.  Finite element analysis of flows in secondary settling tanks , 2005 .

[42]  Jens Markus Melenk,et al.  On the Suboptimality of the p-Version Interior Penalty Discontinuous Galerkin Method , 2010, J. Sci. Comput..

[43]  G. Ekama,et al.  Assessing the applicability of the 1D flux theory to full-scale secondary settling tank design with a 2D hydrodynamic model. , 2004, Water research.

[44]  J. Reddy,et al.  The Finite Element Method in Heat Transfer and Fluid Dynamics , 1994 .

[45]  Benjamin Stamm,et al.  Interior Penalty Continuous and Discontinuous Finite Element Approximations of Hyperbolic Equations , 2010, J. Sci. Comput..

[46]  Raytcho D. Lazarov,et al.  A finite volume element method for a non-linear elliptic problem , 2005, Numer. Linear Algebra Appl..

[47]  Fayssal Benkhaldoun,et al.  Solution of the Sediment Transport Equations Using a Finite Volume Method Based on Sign Matrix , 2009, SIAM J. Sci. Comput..

[48]  A. Michaels,et al.  Settling Rates and Sediment Volumes of Flocculated Kaolin Suspensions , 1962 .

[49]  Endre Süli,et al.  DISCONTINUOUS GALERKIN METHODS FOR FIRST-ORDER HYPERBOLIC PROBLEMS , 2004 .

[50]  Stefan Diehl,et al.  Operating charts for continuous sedimentation IV: limitations for control of dynamic behaviour , 2008 .

[51]  Raimund Bürger,et al.  Model equations for gravitational sedimentation-consolidation processes , 2000 .

[52]  Jacques Rappaz,et al.  International Journal of C 2009 Institute for Scientific Numerical Analysis and Modeling Computing and Information Scientific Computing for Aluminum Production , 2022 .

[53]  Christine Bernardi,et al.  Weighted Clément operator and application to the finite element discretization of the axisymmetric Stokes problem , 2006, Numerische Mathematik.

[54]  Alfio Quarteroni,et al.  Analysis of a finite volume element method for the Stokes problem , 2011, Numerische Mathematik.

[55]  Timothy A. Davis,et al.  An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .