The real nonnegative inverse eigenvalue problem is NP-hard

Abstract A list of complex numbers is realizable if it is the spectrum of a nonnegative matrix. In 1949 Suleimanova posed the nonnegative inverse eigenvalue problem (NIEP): the problem of determining which lists of complex numbers are realizable. The version for reals of the NIEP (RNIEP) asks for realizable lists of real numbers. In the literature there are many sufficient conditions or criteria for lists of real numbers to be realizable. We will present an unified account of these criteria. Then we will see that the decision problem associated to the RNIEP is NP-hard and we will study the complexity for the decision problems associated to known criteria.

[1]  P. G. Ciarlet,et al.  Some results in the theory of nonnegative matrices , 1968 .

[2]  M. Fiedler Eigenvalues of Nonnegative Symmetric Matrices , 1974 .

[3]  Stephen A. Vavasis,et al.  On the Complexity of Nonnegative Matrix Factorization , 2007, SIAM J. Optim..

[4]  A. Borobia,et al.  A unified view on compensation criteria in the real nonnegative inverse eigenvalue problem , 2008 .

[5]  George W. Soules Constructing symmetric nonnegative matrices , 1983 .

[6]  C. Marijuán,et al.  A map of sufficient conditions for the real nonnegative inverse eigenvalue problem , 2007 .

[7]  Brian Hayes,et al.  The Easiest Hard Problem , 2002, American Scientist.

[8]  Helena vSmigoc,et al.  Connecting sufficient conditions for the Symmetric Nonnegative Inverse Eigenvalue Problem , 2015, 1501.06462.

[9]  Mike Boyle,et al.  The spectra of nonnegative matrices via symbolic dynamics , 1991 .

[10]  Fred W. Roush,et al.  The spectra of nonnegative integer matrices via formal power series , 2000 .

[11]  Guo Wuwen,et al.  Elgenvalues of nonnegative matrices , 1997 .

[12]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[13]  Alberto Borobia,et al.  On the nonnegative eigenvalue problem , 1995 .

[14]  R. Bruce Kellogg,et al.  Matrices similar to a positive or essentially positive matrix , 1971 .

[15]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[16]  Helena Šmigoc,et al.  The inverse eigenvalue problem for nonnegative matrices , 2004 .

[17]  Lenore Blum,et al.  Computing over the Reals: Where Turing Meets Newton , 2004 .

[18]  Hazel Perfect,et al.  Methods of constructing certain stochastic matrices. II , 1953 .

[19]  Ricardo L. Soto,et al.  Existence and construction of nonnegative matrices with prescribed spectrum , 2003 .

[20]  Ricardo L. Soto,et al.  A family of realizability criteria for the real and symmetric nonnegative inverse eigenvalue problem , 2013, Numer. Linear Algebra Appl..

[21]  Joel E. Cohen,et al.  Nonnegative ranks, decompositions, and factorizations of nonnegative matrices , 1993 .