Jet-loaded cold atomic beam source for strontium.

We report on the design and characterization of a cold atom source for strontium (Sr) based on a two-dimensional magneto-optical trap (MOT) that is directly loaded from the atom jet of a dispenser. We characterize the atom flux of the source by measuring the loading rate of a three-dimensional MOT. We find loading rates of up to 108 atoms per second. The setup is compact, easy to construct, and has low power consumption. It addresses the longstanding challenge of reducing the complexity of cold beam sources for Sr, which is relevant for optical atomic clocks, quantum simulation, and computing devices based on ultracold Sr.

[1]  D. Jaschke,et al.  Error budgeting for a controlled-phase gate with strontium-88 Rydberg atoms , 2022, Physical Review Research.

[2]  A. Kaufman,et al.  Ytterbium Nuclear-Spin Qubits in an Optical Tweezer Array , 2021, Physical Review X.

[3]  Peter Battaglino,et al.  Assembly and coherent control of a register of nuclear spin qubits , 2021, Nature Communications.

[4]  Bichen Zhang,et al.  Universal Gate Operations on Nuclear Spin Qubits in an Optical Tweezer Array of Yb171, 2021, Physical Review X.

[5]  E. Oelker,et al.  Frequency ratio measurements at 18-digit accuracy using an optical clock network , 2021, Nature.

[6]  E. Oelker,et al.  Half-minute-scale atomic coherence and high relative stability in a tweezer clock , 2020, Nature.

[7]  A. Cooper,et al.  High-fidelity entanglement and detection of alkaline-earth Rydberg atoms , 2020, Nature Physics.

[8]  A. J. Park,et al.  State-Dependent Optical Lattices for the Strontium Optical Qubit. , 2019, Physical review letters.

[9]  G. Lamporesi,et al.  Sideband-Enhanced Cold Atomic Source for Optical Clocks , 2019, Physical Review Applied.

[10]  A. Burgers,et al.  Trapped arrays of alkaline earth Rydberg atoms in optical tweezers. , 2019, 1912.08754.

[11]  A. Cooper,et al.  An Atomic-Array Optical Clock with Single-Atom Readout , 2019, Physical Review X.

[12]  E. Oelker,et al.  Seconds-scale coherence in a tweezer-array optical clock. , 2019, 1904.10934.

[13]  R. Moszynski,et al.  Molecular lattice clock with long vibrational coherence , 2019, Nature Physics.

[14]  E. Oelker,et al.  Optical clock intercomparison with $6\times 10^{-19}$ precision in one hour , 2019, 1902.02741.

[15]  G. Pagano,et al.  Fast and Scalable Quantum Information Processing with Two‐Electron Atoms in Optical Tweezer Arrays , 2018, Advanced Quantum Technologies.

[16]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[17]  A. Kaufman,et al.  Microscopic Control and Detection of Ultracold Strontium in Optical-Tweezer Arrays , 2018, Physical Review X.

[18]  A. Cooper,et al.  Alkaline-Earth Atoms in Optical Tweezers , 2018, Physical Review X.

[19]  M. Weidemüller,et al.  Erratum: Two-dimensional magneto-optical trap as a source for cold strontium atoms [Phys. Rev. A 96, 053415 (2017)] , 2017 .

[20]  Wei He,et al.  Towards miniaturized strontium optical lattice clock , 2017 .

[21]  L. Sonderhouse,et al.  A Fermi-degenerate three-dimensional optical lattice clock , 2017, Science.

[22]  M. Oberthaler,et al.  A new apparatus for trapping and manipulating single Strontium atoms , 2017 .

[23]  Shuhei M. Yoshida,et al.  Recent advances in Rydberg physics using alkaline-earth atoms , 2016 .

[24]  C. Clark,et al.  Extracting transition rates from zero-polarizability spectroscopy , 2015 .

[25]  Kohei Kato,et al.  An ytterbium quantum gas microscope with narrow-line laser cooling , 2015, 1509.03233.

[26]  K. Pandey,et al.  A high flux source of cold strontium atoms , 2015, 1505.04507.

[27]  T L Nicholson,et al.  Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty , 2014, Nature Communications.

[28]  G. Iwata,et al.  Precise study of asymptotic physics with subradiant ultracold molecules , 2014, Nature Physics.

[29]  S. Folling,et al.  Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions , 2014, Nature Physics.

[30]  Wei Zhang,et al.  An optical lattice clock with accuracy and stability at the 10−18 level , 2013, Nature.

[31]  B. O. Kock Magneto-optical trapping of strontium for use as a mobile frequency reference , 2013 .

[32]  M. Bishof,et al.  A New Record in Atomic Clock Performance , 2013 .

[33]  Takahiro Kuga,et al.  A simplified 461-nm laser system using blue laser diodes and a hollow cathode lamp for laser cooling of Sr. , 2013, The Review of scientific instruments.

[34]  P. Windpassinger,et al.  Creation of quantum-degenerate gases of ytterbium in a compact 2D-/3D-magneto-optical trap setup. , 2013, The Review of scientific instruments.

[35]  C. Osborn,et al.  Dynamically configurable and optimizable Zeeman slower using permanent magnets and servomotors , 2011, 1110.5351.

[36]  Wolfgang Ertmer,et al.  Hexapole-compensated magneto-optical trap on a mesoscopic atom chip , 2010, 1012.4321.

[37]  Anpei Ye,et al.  Dipole polarizabilities and magic wavelengths for a Sr and Yb atomic optical lattice clock , 2010 .

[38]  Jun Ye,et al.  Quantum State Engineering and Precision Metrology Using State-Insensitive Light Traps , 2008, Science.

[39]  Jun Ye,et al.  Sr Lattice Clock at 1 × 10–16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock , 2008, Science.

[40]  T. Fukuhara,et al.  Degenerate Fermi gases of ytterbium. , 2006, Physical review letters.

[41]  M. Boyd High Precision Spectroscopy of Strontium in an Optical Lattice: Towards a New Standard for Frequency and Time , 2007 .

[42]  C. Unnikrishnan,et al.  Realization of an intense cold Rb atomic beam based on a two-dimensional magneto-optical trap: Experiments and comparison with simulations , 2006 .

[43]  M. Inguscio,et al.  Intense slow beams of bosonic potassium isotopes , 2005, cond-mat/0511113.

[44]  M. Takamoto,et al.  An optical lattice clock , 2005, Nature.

[45]  D. Stamper-Kurn,et al.  Collimated, single-pass atom source from a pulsed alkali metal dispenser for laser-cooling experiments , 2004, physics/0409011.

[46]  K. Honda,et al.  Spin-singlet Bose-Einstein condensation of two-electron atoms. , 2003, Physical review letters.

[47]  Robert Löw,et al.  Intense source of cold Rb atoms from a pure two-dimensional magneto-optical trap , 2002 .

[48]  D. Jin,et al.  An enriched 40K source for fermionic atom studies , 1999 .

[49]  R.J.C. Spreeuw,et al.  The Two-Dimensional Magneto-optical Trap as a Source of Slow Atoms , 1998 .

[50]  T F Gallagher Rydberg atoms , 1988 .