Anelastic and Compressible Simulation of Moist Deep Convection

AbstractAnelastic and compressible solutions are compared for two moist deep convection benchmarks, a two-dimensional thermal rising in a saturated moist-neutral deep atmosphere, and a three-dimensional supercell formation. In the anelastic model, the pressure applied in the moist thermodynamics comes from either the environmental hydrostatically balanced pressure profile in the standard anelastic model or is combined with nonhydrostatic perturbations from the elliptic pressure solver in the generalized anelastic model. The compressible model applies either an explicit acoustic-mode-resolving scheme requiring short time steps or a novel implicit scheme allowing time steps as large as those used in the anelastic model. The consistency of the unified numerical framework facilitates direct comparisons of results obtained with anelastic and compressible models.The anelastic and compressible rising thermal solutions agree not only with each other but also with the previously published compressible benchmark so...

[1]  P. Smolarkiewicz,et al.  Monotone Finite-Difference Approximations to the Advection-Condensation Problem , 1990 .

[2]  Christian Kühnlein,et al.  A consistent framework for discrete integrations of soundproof and compressible PDEs of atmospheric dynamics , 2014, J. Comput. Phys..

[3]  P. Smolarkiewicz,et al.  A multiscale anelastic model for meteorological research , 2002 .

[4]  P. Smolarkiewicz,et al.  Toward Multiscale Simulation of Moist Flows with Soundproof Equations , 2013 .

[5]  R. Wilhelmson,et al.  The Pressure Perturbation and the Numerical Modeling of a Cloud , 1972 .

[6]  Joanna Szmelter,et al.  Iterated upwind schemes for gas dynamics , 2009, J. Comput. Phys..

[7]  Piotr K. Smolarkiewicz,et al.  Two-Time-Level Semi-Lagrangian Modeling of Precipitating Clouds , 1996 .

[8]  M. Suárez,et al.  A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models , 1994 .

[9]  M. Ziemianski,et al.  Testing the anelastic nonhydrostatic model EULAG as a prospective dynamical core of a numerical weather prediction model Part II: Simulations of supercell , 2011 .

[10]  R. Hemler,et al.  A Scale Analysis of Deep Moist Convection and Some Related Numerical Calculations , 1982 .

[11]  W. Grabowski Toward Cloud Resolving Modeling of Large-Scale Tropical Circulations: A Simple Cloud Microphysics Parameterization , 1998 .

[12]  J. Prusa,et al.  EULAG, a computational model for multiscale flows , 2008 .

[13]  George H. Bryan,et al.  A Benchmark Simulation for Moist Nonhydrostatic Numerical Models , 2002 .

[14]  P. Smolarkiewicz,et al.  Conservative integrals of adiabatic Durran's equations , 2008 .

[15]  R. Rotunno,et al.  Simulations of moist nearly neutral flow over a ridge , 2005 .

[16]  Roger Temam,et al.  Suitable initial conditions , 2006, J. Comput. Phys..

[17]  L. Margolin,et al.  Large-eddy simulations of convective boundary layers using nonoscillatory differencing , 1999 .

[18]  P. R. Bannon On the anelastic approximation for a compressible atmosphere , 1996 .

[19]  Piotr K. Smolarkiewicz,et al.  Multidimensional positive definite advection transport algorithm: an overview , 2006 .

[20]  Joseph B. Klemp,et al.  The Dependence of Numerically Simulated Convective Storms on Vertical Wind Shear and Buoyancy , 1982 .

[21]  R. Pielke,et al.  Thermally Forced Gravity Waves in an Atmosphere at Rest , 1991 .

[22]  H. Davies,et al.  A lateral boundary formulation for multi-level prediction models. [numerical weather forecasting , 1976 .

[23]  D. Durran Improving the Anelastic Approximation , 1989 .

[24]  L. Margolin,et al.  MPDATA: A Finite-Difference Solver for Geophysical Flows , 1998 .

[25]  J. Klemp,et al.  The Simulation of Three-Dimensional Convective Storm Dynamics , 1978 .