Distortion of the Hyperbolicity Constant of a Graph

If $X$ is a geodesic metric space and $x_1,x_2,x_3\in X$, a geodesic triangle $T=\{x_1,x_2,x_3\}$ is the union of the three geodesics $[x_1x_2]$, $[x_2x_3]$ and $[x_3x_1]$ in $X$. The space $X$ is $\delta$- hyperbolic $($in the Gromov sense$)$ if any side of $T$ is contained in a $\delta$-neighborhood of the union of the other two sides, for every geodesic triangle $T$ in $X$. We denote by $\delta(X)$ the sharp hyperbolicity constant of $X$, i.e., $\delta(X):=\inf\{\delta\ge 0: \, X \, \text{ is $\delta$-hyperbolic}\,\}$. The study of hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it. One of the main aims of this paper is to obtain quantitative information about the distortion of the hyperbolicity constant of the graph $G\setminus e$ obtained from the graph $G$ by deleting an arbitrary edge $e$ from it. These inequalities allow to obtain the other main result of this paper, which characterizes in a quantitative way the hyperbolicity of any graph in terms of local hyperbolicity.

[1]  J. Koolen,et al.  On the Hyperbolicity of Chordal Graphs , 2001 .

[2]  Jose Maria Sigarreta,et al.  Gromov hyperbolic graphs , 2013, Discret. Math..

[3]  Jose Maria Sigarreta,et al.  Hyperbolicity and parameters of graphs , 2011, Ars Comb..

[4]  José M. Rodríguez,et al.  Gromov hyperbolicity through decomposition of metrics spaces II , 2004 .

[5]  GROMOV HYPERBOLICITY OF PLANAR GRAPHS AND CW COMPLEXES , 2011 .

[6]  A. Portilla,et al.  A characterization of Gromov hyperbolicity of surfaces with variable negative curvature , 2009 .

[7]  É. Ghys,et al.  Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .

[8]  A. Haefliger,et al.  Group theory from a geometrical viewpoint , 1991 .

[9]  Sergio Bermudo,et al.  Mathematical Properties of Gromov Hyperbolic Graphs , 2010 .

[10]  GROMOV HYPERBOLIC TESSELLATION GRAPHS , 2012 .

[11]  Shing-Tung Yau,et al.  Graph homotopy and Graham homotopy , 2001, Discret. Math..

[12]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[13]  Feodor F. Dragan,et al.  Notes on diameters, centers, and approximating trees of delta-hyperbolic geodesic spaces and graphs , 2008, Electron. Notes Discret. Math..

[14]  Y. Cho,et al.  Discrete Groups , 1994 .

[15]  Characterizing hyperbolic spaces and real trees , 2008, 0810.1526.

[16]  José M. Rodríguez,et al.  Gromov hyperbolicity through decomposition of metric spaces , 2004 .

[17]  E. Tourís Graphs and Gromov hyperbolicity of non-constant negatively curved surfaces , 2011 .

[18]  M. Habib,et al.  Notes on diameters , centers , and approximating trees of δ-hyperbolic geodesic spaces and graphs , 2008 .

[19]  José M. Rodríguez,et al.  Gromov hyperbolic cubic graphs , 2012 .

[20]  Edmond A. Jonckheere,et al.  Scaled Gromov hyperbolic graphs , 2008, J. Graph Theory.

[21]  J. Rodríguez STABILITY OF GROMOV HYPERBOLICITY , 2009 .

[22]  Jose Maria Sigarreta,et al.  On the hyperbolicity constant in graphs , 2011, Discret. Math..

[23]  Edmond A. Jonckheere,et al.  Upper bound on scaled Gromov-hyperbolic delta , 2007, Appl. Math. Comput..

[24]  Jacobus H. Koolen,et al.  Hyperbolic Bridged Graphs , 2002, Eur. J. Comb..

[25]  E. Jonckheere,et al.  Geometry of network security , 2004, Proceedings of the 2004 American Control Conference.

[26]  Jose Maria Sigarreta,et al.  On the Hyperbolicity Constant of Line Graphs , 2011, Electron. J. Comb..

[27]  Jose Maria Sigarreta,et al.  Computing the hyperbolicity constant , 2011, Comput. Math. Appl..

[28]  Jiang-Hua Lu,et al.  Progress in Mathematics , 2013 .

[29]  José M. Rodríguez,et al.  Gromov hyperbolicity in Cartesian product graphs , 2010 .

[30]  José M. Rodríguez,et al.  Gromov Hyperbolicity of Riemann Surfaces , 2007 .

[31]  Jose Maria Sigarreta,et al.  Hyperbolicity and complement of graphs , 2011, Appl. Math. Lett..

[32]  JOSÉ M RODRÍGUEZ,et al.  Bounds on Gromov hyperbolicity constant in graphs , 2012 .

[33]  Chengpeng Zhang,et al.  Chordality and hyperbolicity of a graph , 2009, 0910.3544.