Recent advances in symmetric and network dynamics.

We summarize some of the main results discovered over the past three decades concerning symmetric dynamical systems and networks of dynamical systems, with a focus on pattern formation. In both of these contexts, extra constraints on the dynamical system are imposed, and the generic phenomena can change. The main areas discussed are time-periodic states, mode interactions, and non-compact symmetry groups such as the Euclidean group. We consider both dynamics and bifurcations. We summarize applications of these ideas to pattern formation in a variety of physical and biological systems, and explain how the methods were motivated by transferring to new contexts René Thom's general viewpoint, one version of which became known as "catastrophe theory." We emphasize the role of symmetry-breaking in the creation of patterns. Topics include equivariant Hopf bifurcation, which gives conditions for a periodic state to bifurcate from an equilibrium, and the H/K theorem, which classifies the pairs of setwise and pointwise symmetries of periodic states in equivariant dynamics. We discuss mode interactions, which organize multiple bifurcations into a single degenerate bifurcation, and systems with non-compact symmetry groups, where new technical issues arise. We transfer many of the ideas to the context of networks of coupled dynamical systems, and interpret synchrony and phase relations in network dynamics as a type of pattern, in which space is discretized into finitely many nodes, while time remains continuous. We also describe a variety of applications including animal locomotion, Couette-Taylor flow, flames, the Belousov-Zhabotinskii reaction, binocular rivalry, and a nonlinear filter based on anomalous growth rates for the amplitude of periodic oscillations in a feed-forward network.

[1]  Martin Golubitsky,et al.  Meandering of the Spiral Tip: An Alternative Approach , 1997 .

[2]  D. Ruelle Bifurcations in the presence of a symmetry group , 1973 .

[3]  E. Knobloch,et al.  Period-doubling mode interactions with circular symmetry , 1990 .

[4]  A. Winfree,et al.  Scroll-Shaped Waves of Chemical Activity in Three Dimensions , 1973, Science.

[5]  Martin Golubitsky,et al.  Network Symmetry and Binocular Rivalry Experiments , 2014, Journal of mathematical neuroscience.

[6]  P. Chossat,et al.  Interaction de modes azimutaux dans le problème de Couette-Taylor , 1987 .

[7]  M. Golubitsky,et al.  Primary instabilities and bicriticality in flow between counter-rotating cylinders , 1988 .

[8]  Paul François,et al.  Scaling of embryonic patterning based on phase-gradient encoding , 2012, Nature.

[9]  Harry L. Swinney,et al.  Flow regimes in a circular Couette system with independently rotating cylinders , 1986, Journal of Fluid Mechanics.

[10]  Martin Golubitsky,et al.  An Introduction to Catastrophe Theory and Its Applications , 1978 .

[11]  I. Stewart,et al.  Coupled nonlinear oscillators and the symmetries of animal gaits , 1993 .

[12]  Ian Stewart,et al.  Periodic solutions near equilibria of symmetric Hamiltonian systems , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[13]  Martin Golubitsky,et al.  Network periodic solutions: patterns of phase-shift synchrony , 2012 .

[14]  Anil K. Bajaj,et al.  Flow induced bifurcations to three-dimensional oscillatory motions in continuous tubes , 1984 .

[15]  Martin Golubitsky,et al.  The Abelian Hopf H mod K Theorem , 2010, SIAM J. Appl. Dyn. Syst..

[16]  Claudia Wul,et al.  Theory of meandering and drifting spiral waves in reaction-di usion systems , 1996 .

[17]  Robbins,et al.  Ratcheting motion of concentric rings in cellular flames. , 1996, Physical review letters.

[18]  Symmetry and pattern formation for a planar layer of nematic liquid crystal , 2003 .

[19]  Stephen Smale,et al.  Review: E. C. Zeeman, Catastrophe theory: Selected papers, 1972–1977 , 1978 .

[20]  A. Katok,et al.  Introduction to the Modern Theory of Dynamical Systems: Low-dimensional phenomena , 1995 .

[21]  Eadweard Muybridge,et al.  Muybridge's Complete human and animal locomotion : all 781 plates from the 1887 Animal locomotion , 1979 .

[22]  Ian Stewart,et al.  Stability of nonlinear normal modes of symmetric Hamiltonian systems , 1990 .

[23]  Jerry P. Gollub,et al.  Surface wave mode interactions: effects of symmetry and degeneracy , 1989, Journal of Fluid Mechanics.

[24]  M. Golubitsky,et al.  The Feed-Forward Chain as a Filter-Amplifier Motif , 2009 .

[25]  Meinolf Geck,et al.  Group representation theory , 2007 .

[26]  M. Golubitsky,et al.  Symmetry in locomotor central pattern generators and animal gaits , 1999, Nature.

[27]  D. Barkley,et al.  Euclidean symmetry and the dynamics of rotating spiral waves. , 1994, Physical review letters.

[28]  Ian Stewart,et al.  A modular network for legged locomotion , 1998 .

[29]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[30]  Björn Sandstede,et al.  Center-manifold reduction for spiral waves , 1997 .

[31]  Ian Stewart,et al.  Patterns of Synchrony in Coupled Cell Networks with Multiple Arrows , 2005, SIAM J. Appl. Dyn. Syst..

[32]  E. C. Zeeman,et al.  A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. , 1976, Journal of theoretical biology.

[33]  G. Iooss,et al.  Calcul des solutions bifurquées pour le problème de Couette-Taylor avec les deux cylindres en rotation , 1984 .

[34]  E. Suhubi Nonlinear oscillations, dynamical systems, and bifurcations of vector fields: Applied Mathematical Science, Vol. 42, J. Guckenheimer and P. Holmes, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo (1983). XVI + 453 pp., 206 figs, DM 104 , 1988 .

[35]  J. Dufour,et al.  AN INTRODUCTION TO CATASTROPHE THEORY AND ITS APPLICATIONS , 2022 .

[36]  Petrov,et al.  Transition from Simple Rotating Chemical Spirals to Meandering and Traveling Spirals. , 1996, Physical review letters.

[37]  M. Golubitsky,et al.  Nonlinear dynamics of networks: the groupoid formalism , 2006 .

[38]  Martin Golubitsky,et al.  Nilpotent Hopf Bifurcations in Coupled Cell Systems , 2006, SIAM J. Appl. Dyn. Syst..

[39]  Martin Golubitsky,et al.  Iterates of maps with symmetry , 1988 .

[40]  H. Broer,et al.  Formal normal form theorems for vector fields and some consequences for bifurcations in the volume preserving case , 1981 .

[41]  T Mullin,et al.  Sensitive signal detection using a feed-forward oscillator network. , 2007, Physical review letters.

[42]  Tamás Geszti FEED-FORWARD NETWORKS , 1990 .

[43]  Jack K. Hale,et al.  Infinite dimensional dynamical systems , 1983 .

[44]  Drift bifurcations of relative equilibria and transitions of spiral waves , 1999 .

[45]  Martin Golubitsky,et al.  Pattern formation and bistability in flow between counterrotating cylinders , 1988 .

[46]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[47]  Marcus Pivato,et al.  Symmetry Groupoids and Patterns of Synchrony in Coupled Cell Networks , 2003, SIAM J. Appl. Dyn. Syst..

[48]  Barkley,et al.  Linear stability analysis of rotating spiral waves in excitable media. , 1992, Physical review letters.

[49]  I. Kovács,et al.  When the brain changes its mind: interocular grouping during binocular rivalry. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[50]  D. Sattinger,et al.  Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics , 1986 .

[51]  Pascal Chossat,et al.  Primary and secondary bifurcations in the Couette-Taylor problem , 1985 .

[52]  Giampaolo Cicogna,et al.  Symmetry breakdown from bifurcation , 1981 .

[53]  K. Kirchgässner Exotische Lösungen des Bénardschen Problems , 1979 .

[54]  Martin Krupa,et al.  Bifurcations of relative equilibria , 1990 .

[55]  A. Bruno Normal forms , 1998 .

[56]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[57]  Martin Golubitsky,et al.  Normal Forms and Unfoldings of Singular Strategy Functions , 2015, Dyn. Games Appl..

[58]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[59]  W Weidlich,et al.  Settlement formation , 1990 .

[60]  Bob W. Rink,et al.  Coupled cell networks: Semigroups, Lie algebras and normal forms , 2012, 1209.3209.

[61]  J. Cowan,et al.  A mathematical theory of visual hallucination patterns , 1979, Biological Cybernetics.

[62]  Ian Stewart,et al.  Symmetry and stability in Taylor Couette flow , 1986 .

[63]  Michael Gorman,et al.  Cellular pattern formation in circular domains. , 1997, Chaos.

[64]  D. Sattinger Group representation theory, bifurcation theory and pattern formation , 1978 .

[65]  Yunjiao Wang,et al.  Reduction and Dynamics of a Generalized Rivalry Network with Two Learned Patterns , 2012, SIAM J. Appl. Dyn. Syst..

[66]  J. Frank Adams,et al.  Lectures on Lie groups , 1969 .

[67]  Martin Golubitsky,et al.  Feed-forward networks, center manifolds, and forcing , 2012 .

[68]  Ian Stewart,et al.  Some Curious Phenomena in Coupled Cell Networks , 2004, J. Nonlinear Sci..

[69]  David H. Sattinger,et al.  Group theoretic methods in bifurcation theory , 1979 .

[70]  Tammo tom Dieck,et al.  Representations of Compact Lie Groups , 1985 .

[71]  Martin Golubitsky,et al.  Symmetry in chaos , 1992 .

[72]  Ian Stewart,et al.  Periodic dynamics of coupled cell networks I: rigid patterns of synchrony and phase relations , 2007 .

[73]  W. Skaggs,et al.  Chemical vortex dynamics in the Belousov-Zhabotinskii reaction and in the two-variable oregonator model , 1989 .

[74]  P. Buono Models of central pattern generators for quadruped locomotion II. Secondary gaits , 2001 .

[75]  Ian Stewart,et al.  Target Patterns and Spirals in Planar Reaction-Diffusion Systems , 2000, J. Nonlinear Sci..

[76]  Tuckerman,et al.  Spiral-wave dynamics in a simple model of excitable media: The transition from simple to compound rotation. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[77]  Ian Stewart,et al.  Synchrony-Breaking Bifurcation at a Simple Real Eigenvalue for Regular Networks 1: 1-Dimensional Cells , 2011, SIAM J. Appl. Dyn. Syst..

[78]  Martin Golubitsky,et al.  Central pattern generators for bipedal locomotion , 2006, Journal of mathematical biology.

[79]  André Vanderbauwhede,et al.  Local bifurcation and symmetry , 1982 .

[80]  Martin Golubitsky,et al.  Symmetry-increasing bifurcation of chaotic attractors , 1988 .

[81]  M. Golubitsky,et al.  Bifurcation on the hexagonal lattice and the planar Bénard problem , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[82]  P. Ashwin,et al.  Noncompact drift for relative equilibria and relative periodic orbits , 1997 .

[83]  J. Damon The unfolding and determinacy theorems for subgroups of and , 1984 .

[84]  P. P. Gambari︠a︡n How mammals run : anatomical adaptations , 1974 .

[85]  W Weidlich,et al.  Settlement formation , 1990, The Annals of regional science.

[86]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[87]  Matthew Nicol,et al.  Hypermeander of spirals: local bifurcations and statistical properties , 2001 .

[88]  D. Barkley A model for fast computer simulation of waves in excitable media , 1991 .

[89]  Ian Stewart Synchrony-Breaking Bifurcation at a Simple Real Eigenvalue for Regular Networks 2: Higher-Dimensional Cells , 2014, SIAM J. Appl. Dyn. Syst..

[90]  M. Golubitsky,et al.  Bifurcations on hemispheres , 1991 .

[91]  Michael A. B. Deakin Catastrophe theory and its applications (Surveys and reference works in mathematics2) , 1979 .

[92]  K. Murota,et al.  Bifurcation Theory for Hexagonal Agglomeration in Economic Geography , 2013 .

[93]  T. W. Barrett Review of "Catastrophe Theory, Selected Papers 1972-1977" by E. C. Zeeman , 1979, IEEE Trans. Syst. Man Cybern..

[94]  Nonlinear Normal Modes of Symmetric Hamiltonian Systems , 1987 .

[95]  Gemunu H. Gunaratne,et al.  ASYMMETRIC CELLS AND ROTATING RINGS IN CELLULAR FLAMES , 1996 .

[96]  Ian Stewart,et al.  Existence of nonlinear normal modes of symmetric Hamiltonian systems , 1990 .

[97]  Swinney,et al.  Nonlinear standing waves in Couette-Taylor flow. , 1989, Physical review. A, General physics.

[98]  Frank C. Hoppensteadt,et al.  An introduction to the mathematics of neurons , 1986 .

[99]  M. Golubitsky,et al.  Hopf Bifurcation in the presence of symmetry , 1985 .

[100]  J. J. Collins,et al.  Hexapodal gaits and coupled nonlinear oscillator models , 1993, Biological Cybernetics.

[101]  S. Smale Differentiable dynamical systems , 1967 .

[102]  Michael Field Equivariant dynamical systems , 1980 .

[103]  M. Golubitsky,et al.  Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[104]  Ian Stewart,et al.  Periodic dynamics of coupled cell networks II: cyclic symmetry , 2008 .

[105]  Natasha Loder,et al.  Journal under attack over controversial paper on GM food , 1999, Nature.

[106]  M. Golubitsky,et al.  The Symmetry Perspective , 2002 .

[107]  Martin Golubitsky,et al.  Network periodic solutions: full oscillation and rigid synchrony , 2010 .

[108]  M. Silber,et al.  Spatial period-multiplying instabilities of hexagonal Faraday waves , 2000, nlin/0005066.

[109]  M. Golubitsky,et al.  Models of central pattern generators for quadruped locomotion I. Primary gaits , 2001, Journal of mathematical biology.

[110]  T. W. Barrett,et al.  Catastrophe Theory, Selected Papers 1972-1977 , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[111]  B. Fiedler Global Bifurcation of Periodic Solutions with Symmetry , 1988 .

[112]  R. DiPrima,et al.  A Non-linear Investigation of the Stability of Flow between Counter-rotating Cylinders , 1971 .

[113]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[114]  P. Coullet,et al.  A simple global characterization for normal forms of singular vector fields , 1987 .

[115]  P. Buono,et al.  A mathematical model of motorneuron dynamics in the heartbeat of the leech , 2004 .

[116]  E. Knobloch,et al.  Homoclinic snaking: structure and stability. , 2007, Chaos.

[117]  James Murdock,et al.  Normal forms , 2006, Scholarpedia.

[118]  M. El-Hamdi,et al.  Rotating and Modulated Rotating States of Cellular Flames , 1994 .

[119]  Martin Golubitsky,et al.  Classification and Unfoldings of Degenerate Hopf Bifurcations , 1981 .

[120]  Pascal Chossat,et al.  The Couette-Taylor Problem , 1992 .

[121]  B. Hassard,et al.  Theory and applications of Hopf bifurcation , 1981 .

[122]  Bernold Fiedler,et al.  Normal Forms, Resonances, and Meandering Tip Motions near Relative Equilibria of Euclidean Group Actions , 1998 .

[123]  M. Golubitsky,et al.  Models of central pattern generators for quadruped locomotion II. Secondary gaits , 2001, Journal of mathematical biology.

[124]  Bernold Fiedler,et al.  Bifurcation from Relative Equilibria of Noncompact Group Actions: Skew Products, Meanders, and Drift , 1996 .

[125]  Martin Golubitsky,et al.  Derived Patterns in Binocular Rivalry Networks , 2013, Journal of mathematical neuroscience.

[126]  M. El-Hamdi,et al.  Experimental Observation of Ordered States of Cellular Flames , 1994 .

[127]  A. Ben-Tal A Study of Symmetric Forced Oscillators , 2001 .

[128]  M. Golubitsky,et al.  Hopf Bifurcation in the presence of symmetry , 1984 .

[129]  K. Josić,et al.  Network architecture and spatio-temporally symmetric dynamics , 2006 .