PD observer design for descriptor systems: An LMI approach

This paper investigates the problem of proportional-derivative (PD) observer design for descriptor systems. A necessary and sufficient condition for the solvability of this problem is obtained in terms of a linear matrix inequality (LMI). The explicit expression of desired PD observer is also given, which involves solving an LMI. An illustrative example is provided to demonstrate the effectiveness of the proposed approach.

[1]  Zhiwei Gao,et al.  Pd Observer Parameterization Design for Descriptor Systems , 2005, J. Frankl. Inst..

[2]  R. Mukundan,et al.  On the design of observers for generalized state space systems using singular value decomposition , 1983 .

[3]  L. Dai Observers for discrete singular systems , 1988 .

[4]  Shou-Yuan Zhang,et al.  Functional observer and state feedback , 1987 .

[5]  M.T.F. Saidahmed A new approach for designing a reduced-order controller of linear singular systems , 1990 .

[6]  G. Duan,et al.  Design of PD Observers in Descriptor Linear Systems , 2007 .

[7]  Shengyuan Xu,et al.  Robust Control and Filtering of Singular Systems , 2006 .

[8]  Cheng-Wu Yang,et al.  Observer design for singular systems with unknown inputs , 1989 .

[9]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[10]  P. Dooren,et al.  A reduced order observer for descriptor systems , 1986 .

[11]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[12]  R. Carroll,et al.  Design of a minimal-order observer for singular systems , 1987 .

[13]  Frank L. Lewis,et al.  Geometric design techniques for observers in singular systems , 1990, Autom..

[14]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[15]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[16]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .