Fuzzy clustering of distribution-valued data using an adaptive L2 Wasserstein distance
暂无分享,去创建一个
[1] Mathieu Vrac,et al. Copula analysis of mixture models , 2012, Comput. Stat..
[2] Francisco de A. T. de Carvalho,et al. Dynamic clustering of histogram data based on adaptive squared Wasserstein distances , 2011, Expert Syst. Appl..
[3] Francisco de A. T. de Carvalho,et al. Unsupervised pattern recognition models for mixed feature-type symbolic data , 2010, Pattern Recognit. Lett..
[4] Yves Lechevallier,et al. Dynamic Clustering of Interval-Valued Data Based on Adaptive Quadratic Distances , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.
[5] Yves Lechevallier,et al. Partitional clustering algorithms for symbolic interval data based on single adaptive distances , 2009, Pattern Recognit..
[6] Hichem Frigui,et al. Clustering and aggregation of relational data with applications to image database categorization , 2007, Pattern Recognit..
[7] Weina Wang,et al. On fuzzy cluster validity indices , 2007, Fuzzy Sets Syst..
[8] Francisco de A. T. de Carvalho,et al. Fuzzy c-means clustering methods for symbolic interval data , 2007, Pattern Recognit. Lett..
[9] Alison L Gibbs,et al. On Choosing and Bounding Probability Metrics , 2002, math/0209021.
[10] W. Gilchrist,et al. Statistical Modelling with Quantile Functions , 2000 .
[11] Hans-Hermann Bock,et al. Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data , 2000 .
[12] Rajesh N. Davé,et al. Validating fuzzy partitions obtained through c-shells clustering , 1996, Pattern Recognit. Lett..
[13] James C. Bezdek,et al. Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.
[14] Antonio Irpino,et al. Comparing Histogram Data Using a Mahalanobis–Wasserstein Distance , 2008 .
[15] Antonio Irpino,et al. Dynamic Clustering of Histogram Data: Using the Right Metric , 2007 .
[16] Antonio Irpino,et al. Optimal histogram representation of large data sets: Fisher vs piecewise linear approximation , 2007, EGC.
[17] Antonio Irpino,et al. A New Wasserstein Based Distance for the Hierarchical Clustering of Histogram Symbolic Data , 2006, Data Science and Classification.
[18] Y. Lechevallier,et al. Dynamic clustering of histograms using Wasserstein metric , 2006 .
[19] Hans-Hermann Bock,et al. Analysis of Symbolic Data , 2000 .
[20] Carlos Matrán,et al. Optimal Transportation Plans and Convergence in Distribution , 1997 .
[21] C. Givens,et al. A class of Wasserstein metrics for probability distributions. , 1984 .