Efficient Solutions for Nonlocal Diffusion Problems Via Boundary-Adapted Spectral Methods

We introduce an efficient boundary-adapted spectral method for peridynamic transient diffusion problems with arbitrary boundary conditions. The spectral approach transforms the convolution integral in the peridynamic formulation into a multiplication in the Fourier space, resulting in computations that scale as O ( N  log  N ). The limitation of regular spectral methods to periodic problems is eliminated using the volume penalization method. We show that arbitrary boundary conditions or volume constraints can be enforced in this way to achieve high levels of accuracy. To test the performance of our approach we compare the computational results with analytical solutions of the nonlocal problem. The performance is tested with convergence studies in terms of nodal discretization and the size of the penalization parameter in problems with Dirichlet and Neumann boundary conditions.

[1]  Philippe H. Geubelle,et al.  Handbook of Peridynamic Modeling , 2017 .

[2]  Yuye Tang,et al.  The Effect of Solder Joint Microstructure on the Drop Test Failure—A Peridynamic Analysis , 2019, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[3]  R. Lehoucq,et al.  Peridynamic Theory of Solid Mechanics , 2010 .

[4]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[5]  Sandia Report,et al.  Origin and Effect of Nonlocality in a Composite , 2014 .

[6]  Zdenek P. Bazant,et al.  Why Continuum Damage is Nonlocal: Micromechanics Arguments , 1991 .

[7]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[8]  Mirco Zaccariotto,et al.  An effective way to couple FEM meshes and Peridynamics grids for the solution of static equilibrium problems , 2016 .

[9]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[10]  Ziguang Chen,et al.  Intraply Fracture in Fiber-Reinforced Composites: A Peridynamic Analysis , 2018, American Society for Composites 2018.

[11]  F. Bobaru,et al.  Pitting, lacy covers, and pit merger in stainless steel: 3D peridynamic models , 2019, Corrosion Science.

[12]  Florin Bobaru,et al.  Surface corrections for peridynamic models in elasticity and fracture , 2017, Computational Mechanics.

[13]  F. Celiker,et al.  Nonlocal Operators with Local Boundary Conditions: An Overview , 2018 .

[14]  Milan Jirásek,et al.  Nonlocal integral formulations of plasticity and damage : Survey of progress , 2002 .

[15]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[16]  Jesús Rosado,et al.  Asymptotic Flocking Dynamics for the Kinetic Cucker-Smale Model , 2010, SIAM J. Math. Anal..

[17]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[18]  Edmund Whittaker,et al.  A Course of Modern Analysis: Preface , 1996 .

[19]  Dmitry Kolomenskiy,et al.  A Fourier spectral method for the Navier-Stokes equations with volume penalization for moving solid obstacles , 2009, J. Comput. Phys..

[20]  Philippe Angot,et al.  A volume penalization method for incompressible flows and scalar advection-diffusion with moving obstacles , 2011, J. Comput. Phys..

[21]  T. J. Vogler,et al.  Peridynamics Modeling of a Shock Wave Perturbation Decay Experiment in Granular Materials with Intra-granular Fracture , 2018, Journal of Dynamic Behavior of Materials.

[22]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[23]  Hong Wang,et al.  A fast and faithful collocation method with efficient matrix assembly for a two-dimensional nonlocal diffusion model , 2014 .

[24]  F. Bobaru,et al.  Peridynamic Functionally Graded and Porous Materials: Modeling Fracture and Damage , 2018 .

[25]  R. Barretta,et al.  Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams , 2017 .

[26]  Hao Liu,et al.  Bumblebees minimize control challenges by combining active and passive modes in unsteady winds , 2016, Scientific Reports.

[27]  Jiang Yang,et al.  Fast and accurate implementation of Fourier spectral approximations of nonlocal diffusion operators and its applications , 2017, J. Comput. Phys..

[28]  Ziguang Chen,et al.  Peridynamic modeling of pitting corrosion damage , 2015 .

[29]  John G. Proakis,et al.  Digital Signal Processing: Principles, Algorithms, and Applications , 1992 .

[30]  F. Bobaru,et al.  Peridynamic Modeling of Repassivation in Pitting Corrosion of Stainless Steel , 2017 .

[31]  F. Bobaru,et al.  Supershear damage propagation and sub-Rayleigh crack growth from edge-on impact: A peridynamic analysis , 2018 .

[32]  F. Bobaru,et al.  A peridynamic model for brittle damage and fracture in porous materials , 2019, International Journal of Rock Mechanics and Mining Sciences.

[33]  Hong Wang Peridynamics and Nonlocal Diffusion Models: Fast Numerical Methods , 2018 .

[34]  F. Bobaru,et al.  Characteristics of dynamic brittle fracture captured with peridynamics , 2011 .

[35]  Jianhong Wu,et al.  Nonlocality of Reaction-Diffusion Equations Induced by Delay: Biological Modeling and Nonlinear Dynamics , 2004 .

[36]  Guanfeng Zhang,et al.  Why do cracks branch? A peridynamic investigation of dynamic brittle fracture , 2015, International Journal of Fracture.

[37]  Pratheek Shanthraj,et al.  FFT-based interface decohesion modelling by a nonlocal interphase , 2018, Adv. Model. Simul. Eng. Sci..

[38]  S. Silling,et al.  Peridynamics via finite element analysis , 2007 .

[39]  Nicholas K.-R. Kevlahan,et al.  Computation of turbulent flow past an array of cylinders using a spectral method with Brinkman penalization , 2001 .

[40]  Yuri Bazilevs,et al.  Peridynamic Modeling of Frictional Contact , 2019, Journal of Peridynamics and Nonlocal Modeling.

[41]  Hui-Chia Yu,et al.  Extended smoothed boundary method for solving partial differential equations with general boundary conditions on complex boundaries , 2009, 1107.5341.

[42]  Selda Oterkus,et al.  Peridynamic thermal diffusion , 2014, J. Comput. Phys..

[43]  Li Tian,et al.  A Convergent Adaptive Finite Element Algorithm for Nonlocal Diffusion and Peridynamic Models , 2013, SIAM J. Numer. Anal..

[44]  C. K. Yuen,et al.  Theory and Application of Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[45]  F. Bobaru,et al.  Elastic vortices and thermally-driven cracks in brittle materials with peridynamics , 2017, International Journal of Fracture.

[46]  Ziguang Chen,et al.  Peridynamic Modeling of Intergranular Corrosion Damage , 2018 .

[47]  K. Burrage,et al.  Fourier spectral methods for fractional-in-space reaction-diffusion equations , 2014 .

[48]  Felipe Cucker,et al.  Emergent Behavior in Flocks , 2007, IEEE Transactions on Automatic Control.

[49]  Pablo Seleson,et al.  Convergence studies in meshfree peridynamic simulations , 2016, Comput. Math. Appl..

[50]  A. Mogilner,et al.  A non-local model for a swarm , 1999 .

[51]  Bo Ren,et al.  A 3D discontinuous Galerkin finite element method with the bond-based peridynamics model for dynamic brittle failure analysis , 2017 .

[52]  Qiang Du,et al.  Mathematical Models and Methods in Applied Sciences c ○ World Scientific Publishing Company Sandia National Labs SAND 2010-8353J A NONLOCAL VECTOR CALCULUS, NONLOCAL VOLUME-CONSTRAINED PROBLEMS, AND NONLOCAL BALANCE LAWS , 2022 .

[53]  Víctor M. Pérez-García,et al.  Spectral Methods for Partial Differential Equations in Irregular Domains: The Spectral Smoothed Boundary Method , 2006, SIAM J. Sci. Comput..

[54]  Erdogan Madenci,et al.  Coupling of peridynamic theory and the finite element method , 2010 .

[55]  Philippe Angot,et al.  A penalization method to take into account obstacles in incompressible viscous flows , 1999, Numerische Mathematik.

[56]  Kai Schneider,et al.  A pseudo-spectral method with volume penalisation for magnetohydrodynamic turbulence in confined domains , 2011, Comput. Phys. Commun..

[57]  H. Brinkman A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles , 1949 .

[58]  A. Cemal Eringen,et al.  Linear theory of nonlocal elasticity and dispersion of plane waves , 1972 .

[59]  Kai Schneider,et al.  Numerical simulation of the transient flow behaviour in chemical reactors using a penalisation method , 2005 .

[60]  Arun K. Subramaniyan,et al.  Validation of a peridynamic model for fatigue cracking , 2016 .

[61]  S. Silling,et al.  A meshfree method based on the peridynamic model of solid mechanics , 2005 .

[62]  G. Coclite,et al.  Numerical methods for the nonlocal wave equation of the peridynamics , 2018, 1808.00061.

[63]  R. Colombo,et al.  A CLASS OF NONLOCAL MODELS FOR PEDESTRIAN TRAFFIC , 2011, 1104.2985.

[64]  Florin Bobaru,et al.  Selecting the kernel in a peridynamic formulation: A study for transient heat diffusion , 2015, Comput. Phys. Commun..

[65]  F. Bobaru,et al.  Construction of a peridynamic model for transient advection-diffusion problems , 2018, International Journal of Heat and Mass Transfer.

[66]  Dennj De Meo,et al.  Finite element implementation of a peridynamic pitting corrosion damage model , 2017 .

[67]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[68]  Fatih Celiker,et al.  Nonlocal operators with local boundary conditions in higher dimensions , 2018, Advances in Computational Mathematics.

[69]  F. Bobaru,et al.  Computational modeling of pitting corrosion , 2019, Corrosion Reviews.

[70]  X. Chen,et al.  Continuous and discontinuous finite element methods for a peridynamics model of mechanics , 2011 .

[71]  Eitan Tadmor,et al.  Eulerian dynamics with a commutator forcing , 2016, 1612.04297.

[72]  Qiang Du,et al.  A spectral method for nonlocal diffusion operators on the sphere , 2018, J. Comput. Phys..

[73]  Dennj De Meo,et al.  Modelling of stress-corrosion cracking by using peridynamics , 2016 .

[74]  Jiang Yang,et al.  Asymptotically Compatible Fourier Spectral Approximations of Nonlocal Allen-Cahn Equations , 2016, SIAM J. Numer. Anal..

[75]  F. Lehmann,et al.  Bumblebee Flight in Heavy Turbulence. , 2015, Physical review letters.

[76]  P. Radu,et al.  A doubly nonlocal Laplace operator and its connection to the classical Laplacian , 2019, Journal of Integral Equations and Applications.

[77]  F. Bobaru,et al.  A stochastically homogenized peridynamic model for intraply fracture in fiber-reinforced composites , 2019, Composites Science and Technology.