Integrating Selective Attention and Space-Variant Sensing in Machine Vision

Studies on visual perception have demonstrated that selective attention mechanisms and space-variant sensing are powerful tools for focusing available computing resources to the process of relevant data. In this paper an overall architecture for an active, anthropomorphic robot vision system which integrates retina-like sensing and attention mechanisms is proposed. Gaze direction is shifted both on the basis of sensory and semantic characteristics of the visual input, which are extracted separately by means of a parallel and serial analysis. An implementation of the system by means of optical flow and neural network techniques is described, and the results of its application are discussed.

[1]  John K. Tsotsos,et al.  An Attentional Prototype for Early Vision , 1992, ECCV.

[2]  T. Kohonen Self-organized formation of topographically correct feature maps , 1982 .

[3]  Giulio Sandini,et al.  An anthropomorphic retina-like structure for scene analysis , 1980 .

[4]  K. Kanatani Group-Theoretical Methods in Image Understanding , 1990 .

[5]  Giulio Sandini,et al.  Active vision based on space-variant sensing , 1991 .

[6]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[7]  L. Vaina Matters of Intelligence , 1987 .

[8]  Ramesh C. Jain,et al.  Motion Stereo Using Ego-Motion Complex Logarithmic Mapping , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  D. Noton,et al.  Eye movements and visual perception. , 1971, Scientific American.

[10]  M. Posner,et al.  Orienting of Attention* , 1980, The Quarterly journal of experimental psychology.

[11]  Carl F. R. Weiman,et al.  Tracking Algorithms Using Log-Polar Mapped Image Coordinates , 1990, Other Conferences.

[12]  Giulio Sandini,et al.  Estimation of depth from motion using an anthropomorphic visual sensor , 1990, Image Vis. Comput..

[13]  Dana H. Ballard,et al.  Animate Vision , 1991, Artif. Intell..

[14]  J. Crowley A representation for visual information , 1981 .

[15]  John K. Tsotsos Analyzing vision at the complexity level , 1990, Behavioral and Brain Sciences.

[16]  Colin Blakemore,et al.  Vision: Coding and Efficiency , 1991 .

[17]  C. Blakemore,et al.  Vision: The iconic bottleneck and the tenuous link between early visual processing and perception , 1990 .

[18]  Peter J. Burt,et al.  Smart sensing within a pyramid vision machine , 1988, Proc. IEEE.

[19]  Andrew Zisserman,et al.  Geometric invariance in computer vision , 1992 .

[20]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[21]  Yiannis Aloimonos,et al.  Purposive and qualitative active vision , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[22]  R. Almond The therapeutic community. , 1971, Scientific American.

[23]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[24]  Thomas O. Binford,et al.  Ignorance, myopia, and naiveté in computer vision systems , 1991, CVGIP Image Underst..

[25]  R. Bajcsy Active perception , 1988 .

[26]  F. Bartolini,et al.  Multiwindow least-squares approach to the estimation of optical flow with discontinuities , 1993 .

[27]  Paolo Dario,et al.  Selective attention mechanisms in a vision system based on neural networks , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[28]  Azriel Rosenfeld,et al.  Multiresolution image processing and analysis , 1984 .

[29]  Andrew Blake,et al.  Surface Orientation and Time to Contact from Image Divergence and Deformation , 1992, ECCV.

[30]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[31]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[32]  Giulio Sandini,et al.  2nd European conference on computer vision , 1992, Image Vis. Comput..

[33]  Robert Hecht-Nielsen,et al.  Applications of counterpropagation networks , 1988, Neural Networks.

[34]  Joseph L. Mundy,et al.  Projective geometry for machine vision , 1992 .

[35]  W. James The principles of psychology , 1983 .