Inexact Restoration for Minimization with Inexact Evaluation both of the Objective Function and the Constraints

In a recent paper an Inexact Restoration method for solving continuous constrained optimization problems was analyzed from the point of view of worst-case functional complexity and convergence. On the other hand, the Inexact Restoration methodology was employed, in a different research, to handle minimization problems with inexact evaluation and simple constraints. These two methodologies are combined in the present report, for constrained minimization problems in which both the objective function and the constraints, as well as their derivatives, are subject to evaluation errors. Together with a complete description of the method, complexity and convergence results will be proved.

[1]  M. Teresa T. Monteiro,et al.  A filter inexact-restoration method for nonlinear programming , 2008 .

[2]  Elvio A. Pilotta,et al.  Numerical comparison of merit function with filter criterion in inexact restoration algorithms using hard-spheres problems , 2009, Comput. Optim. Appl..

[3]  José Mario Martínez,et al.  Strict Constraint Qualifications and Sequential Optimality Conditions for Constrained Optimization , 2018, Math. Oper. Res..

[4]  C. Yalçin Kaya,et al.  Inexact Restoration for Euler Discretization of Box-Constrained Optimal Control Problems , 2013, J. Optim. Theory Appl..

[5]  José Mario Martínez,et al.  A Flexible Inexact-Restoration Method for Constrained Optimization , 2015, J. Optim. Theory Appl..

[6]  José Mario Martínez,et al.  Nonmonotone Spectral Projected Gradient Methods on Convex Sets , 1999, SIAM J. Optim..

[7]  E. W. Karas,et al.  Global convergence of a derivative-free inexact restoration filter algorithm for nonlinear programming , 2017 .

[8]  J. M. Martínez,et al.  Inexact-Restoration Method with Lagrangian Tangent Decrease and New Merit Function for Nonlinear Programming , 2001 .

[9]  High-order Evaluation Complexity of a Stochastic Adaptive Regularization Algorithm for Nonconvex Optimization Using Inexact Function Evaluations and Randomly Perturbed Derivatives , 2020, 2005.04639.

[10]  José Mario Martínez,et al.  An inexact restoration approach to optimization problems with multiobjective constraints under weighted-sum scalarization , 2016, Optim. Lett..

[11]  C. Yalçın Kaya,et al.  Inexact restoration and adaptive mesh refinement for optimal control , 2013 .

[12]  José Mario Martínez,et al.  Inexact restoration method for minimization problems arising in electronic structure calculations , 2011, Comput. Optim. Appl..

[13]  Douglas S. Gonçalves,et al.  Non-monotone inexact restoration method for nonlinear programming , 2020, Comput. Optim. Appl..

[14]  Pablo A. Lotito,et al.  The demand adjustment problem via inexact restoration method , 2018 .

[15]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[16]  J. B. Rosen The Gradient Projection Method for Nonlinear Programming. Part I. Linear Constraints , 1960 .

[17]  李幼升,et al.  Ph , 1989 .

[18]  Clóvis C. Gonzaga,et al.  A Globally Convergent Filter Method for Nonlinear Programming , 2003, SIAM J. Optim..

[19]  J. M. Martínez,et al.  Euler Discretization and Inexact Restoration for Optimal Control , 2007 .

[20]  J. C. Heideman,et al.  Sequential gradient-restoration algorithm for the minimization of constrained functions—Ordinary and conjugate gradient versions , 1969 .

[21]  C. Yalçin Kaya,et al.  Inexact Restoration for Runge-Kutta Discretization of Optimal Control Problems , 2010, SIAM J. Numer. Anal..

[22]  José Mario Martínez,et al.  Inexact Restoration Method for Derivative-Free Optimization with Smooth Constraints , 2013, SIAM J. Optim..

[23]  Martinez,et al.  Constrained Optimization With Integer And Continuous Variables Using Inexact Restoration And Projected Gradients , 2016 .

[24]  José Mario Martínez,et al.  Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact , 2019, Math. Comput..

[25]  Ph. L. Toint,et al.  Minimizing convex quadratics with variable precision conjugate gradients , 2021, Numer. Linear Algebra Appl..

[26]  W. Marsden I and J , 2012 .

[27]  L. F. Bueno,et al.  On the Complexity of an Inexact Restoration Method for Constrained Optimization , 2020, SIAM J. Optim..

[28]  J. M. Martínez,et al.  Inexact spectral projected gradient methods on convex sets , 2003 .

[29]  J. B. Rosen The gradient projection method for nonlinear programming: Part II , 1961 .

[30]  S. Bellavia,et al.  Adaptive Regularization Algorithms with Inexact Evaluations for Nonconvex Optimization , 2018, SIAM J. Optim..

[31]  José Mario Martínez,et al.  Spectral Projected Gradient Method with Inexact Restoration for Minimization with Nonconvex Constraints , 2009, SIAM J. Sci. Comput..

[32]  M. L. Schuverdt,et al.  An inexact restoration derivative-free filter method for nonlinear programming , 2015, Computational and Applied Mathematics.

[33]  J. M. Martínez,et al.  Local Convergence of an Inexact-Restoration Method and Numerical Experiments , 2005 .

[34]  Andreas Fischer,et al.  A new line search inexact restoration approach for nonlinear programming , 2010, Comput. Optim. Appl..

[35]  José Mario Martínez,et al.  On the employment of inexact restoration for the minimization of functions whose evaluation is subject to errors , 2018, Math. Comput..

[36]  Nélida E. Echebest,et al.  Inexact Restoration method for nonlinear optimization without derivatives , 2015, J. Comput. Appl. Math..

[37]  E. Simon,et al.  An algorithm for the minimization of nonsmooth nonconvex functions using inexact evaluations and its worst-case complexity , 2019, Math. Program..

[38]  Douglas S. Gonçalves,et al.  Nonmonotone inexact restoration approach for minimization with orthogonality constraints , 2020, Numerical Algorithms.

[39]  J. M. Martínez,et al.  On sequential optimality conditions for smooth constrained optimization , 2011 .

[40]  Serge Gratton,et al.  A note on solving nonlinear optimization problems in variable precision , 2018, Computational Optimization and Applications.

[41]  N. Bourbaki Topological Vector Spaces , 1987 .

[42]  José Mario Martínez,et al.  Spectral Projected Gradient Methods: Review and Perspectives , 2014 .

[43]  José Mario Martínez,et al.  Assessing the reliability of general-purpose Inexact Restoration methods , 2015, J. Comput. Appl. Math..

[44]  José Mario Martínez,et al.  Inexact Restoration approach for minimization with inexact evaluation of the objective function , 2015, Math. Comput..

[45]  Matthias Heinkenschloss,et al.  Inexact Objective Function Evaluations in a Trust-Region Algorithm for PDE-Constrained Optimization under Uncertainty , 2014, SIAM J. Sci. Comput..

[46]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[47]  Stefania Bellavia,et al.  Inexact restoration with subsampled trust-region methods for finite-sum minimization , 2019, Comput. Optim. Appl..

[48]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.