Cyclic AMP in prokaryotes

Cyclic AMP (cAMP) is found in a variety of prokaryotes including both eubacteria and archaebacteria. cAMP plays a role in regulating gene expression, not only for the classic inducible catabolic operons, but also for other categories. In the enteric coliforms, the effects of cAMP on gene expression are mediated through its interaction with and allosteric modification of a cAMP-binding protein (CRP). The CRP-cAMP complex subsequently binds specific DNA sequences and either activates or inhibits transcription depending upon the positioning of the complex relative to the promoter. Enteric coliforms have provided a model to explore the mechanisms involved in controlling adenylate cyclase activity, in regulating adenylate cyclase synthesis, and in performing detailed examinations of CRP-cAMP complex-regulated gene expression. This review summarizes recent work focused on elucidating the molecular mechanisms of CRP-cAMP complex-mediated processes. For other bacteria, less detail is known. cAMP has been implicated in regulating antibiotic production, phototrophic growth, and pathogenesis. A role for cAMP has been suggested in nitrogen fixation. Often the only data that support cAMP involvement in these processes includes cAMP measurement, detection of the enzymes involved in cAMP metabolism, or observed effects of high concentrations of the nucleotide on cell growth.

[1]  M. Pall Adenosine 3',5'-phosphate in fungi. , 1981, Microbiological reviews.

[2]  J. Shioi,et al.  Signal transduction in chemotaxis to oxygen in Escherichia coli and Salmonella typhimurium , 1988, Journal of bacteriology.

[3]  R. Wilde,et al.  Nucleotide sequence encoding the flavoprotein and hydrophobic subunits of the succinate dehydrogenase of Escherichia coli. , 1984, The Biochemical journal.

[4]  A. Arias,et al.  Metabolism of Some Polyols by Rhizobium meliloti , 1970, Journal of bacteriology.

[5]  D. Arp,et al.  Regulation of H2 oxidation activity and hydrogenase protein levels by H2, O2, and carbon substrates in Alcaligenes latus , 1987, Journal of bacteriology.

[6]  D. Emerich,et al.  Adenylate cyclase and cyclic AMP phosphodiesterase in Bradyrhizobium japonicum bacteroids , 1989, Journal of bacteriology.

[7]  R. Chesney E. colil-asparaginase II production in the presence and absence of catabolite activating protein , 1983 .

[8]  A. Danchin,et al.  Rhizobium meliloti adenylate cyclase is related to eucaryotic adenylate and guanylate cyclases , 1990, Journal of bacteriology.

[9]  A. Nebreda,et al.  Possible role of cAMP in the synthesis of β-glucanases and β-xylanases of Bacillus circulans WL-12 , 1984 .

[10]  P. Blum,et al.  Genetic basis of starvation survival in nondifferentiating bacteria. , 1989, Annual review of microbiology.

[11]  A. Danchin,et al.  The calmodulin‐sensitive adenylate cyclase of Bordetella pertussis: cloning and expression in Escherichia col , 1988, Molecular microbiology.

[12]  B. Eisenstein,et al.  Pseudocatabolite repression of type 1 fimbriae of Escherichia coli , 1982, Journal of bacteriology.

[13]  M. Merrick,et al.  Positive control and autogenous regulation of the nifLA promoter in Klebsiella pneumoniae , 1983, Nature.

[14]  J. Calvo,et al.  Promoter mutation causing catabolite repression of the Salmonella typhimurium leucine operon , 1984, Journal of bacteriology.

[15]  R. Curtiss,et al.  Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic , 1987, Infection and immunity.

[16]  B. Oudega,et al.  Protein H encoded by plasmid CloDF13 is involved in excretion of cloacin DF13 , 1982, Journal of bacteriology.

[17]  V. Cabelli,et al.  Glucose-mediated catabolite repression of the tricarboxylic acid cycle as an explanation for increased acetic acid production in suicidal Aeromonas strains , 1990, Journal of bacteriology.

[18]  E. Hanski,et al.  Invasive adenylate cyclase toxin of Bordetella pertussis. , 1989, Trends in biochemical sciences.

[19]  L. Vining,et al.  Catabolite repression in Streptomyces venezuelae. Induction of beta-galactosidase, chloramphenicol production, and intracellular cyclic adenosine 3',5'-monophosphate concentrations. , 1982, Canadian journal of microbiology.

[20]  A. Danchin,et al.  The complete nucleotide sequence of the adenylate cyclase gene of Escherichia coli. , 1984, Nucleic acids research.

[21]  B. Bachmann,et al.  Linkage Map of Escherichia coli K-12, Edition 8 , 1991, Microbiological reviews.

[22]  R. Bender,et al.  Role of the nac gene product in the nitrogen regulation of some NTR-regulated operons of Klebsiella aerogenes , 1990, Journal of bacteriology.

[23]  K. Shanmugam,et al.  Regulation of hydrogen utilisation in Rhizobium japonicum by cyclic AMP. , 1979, Biochimica et biophysica acta.

[24]  S. Gottesman Bacterial regulation: global regulatory networks. , 1984, Annual review of genetics.

[25]  F. Ausubel,et al.  Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[26]  C. Higgins,et al.  Effects of anaerobic regulatory mutations and catabolite repression on regulation of hydrogen metabolism and hydrogenase isoenzyme composition in Salmonella typhimurium , 1986, Journal of bacteriology.

[27]  Dependence of turimycin biosynthesis on different substrates and its relationship to cyclic AMP levels of Streptomyces hygroscopicus , 1982 .

[28]  R. Brownlie,et al.  Adenylate cyclase activity during phenotypic variation of Bordetella pertussis. , 1985, Journal of general microbiology.

[29]  P. Cossart,et al.  crp genes of Shigella flexneri, Salmonella typhimurium, and Escherichia coli , 1986, Journal of bacteriology.

[30]  N E Møllegaard,et al.  Tandem DNA-bound cAMP-CRP complexes are required for transcriptional repression of the deoP2 promoter by the CytR repressor in Escherichia coli. , 1990, Molecular microbiology.

[31]  J. Lee,et al.  Application of fluorescence energy transfer and polarization to monitor Escherichia coli cAMP receptor protein and lac promoter interaction. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[32]  F. Bergersen,et al.  Energy status, growth and nitrogenase activity in continuous cultures of Rhizobium sp. strain CB756 supplied with NH+4 and various rates of aeration. , 1981, Biochimica et biophysica acta.

[33]  T. Steitz,et al.  Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 A resolution. , 1987, Journal of molecular biology.

[34]  H. Lichenstein,et al.  Repression and catabolite gene activation in the araBAD operon , 1987, Journal of bacteriology.

[35]  M. Record,et al.  Stable DNA loops in vivo and in vitro: roles in gene regulation at a distance and in biophysical characterization of DNA. , 1990, Progress in nucleic acid research and molecular biology.

[36]  P. Dunlap,et al.  Regulation of luminescence by cyclic AMP in cya-like and crp-like mutants of Vibrio fischeri , 1989, Journal of bacteriology.

[37]  W. Wenman,et al.  Cyclic AMP inhibits developmental regulation of Chlamydia trachomatis , 1986, Journal of bacteriology.

[38]  V. Bankaitis,et al.  Regulation of adenylate cyclase synthesis in Escherichia coli: studies with cya-lac operon and protein fusion strains , 1982, Journal of bacteriology.

[39]  H. Stieglitz,et al.  Catabolite repression of Escherichia coli heat-stable enterotoxin activity , 1981, Journal of bacteriology.

[40]  I. Pastan,et al.  Cyclic AMP receptor protein of E. coli: its role in the synthesis of inducible enzymes. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[41]  J. BachmannB 大腸菌K‐12のリンケージマップ,8版 , 1990 .

[42]  J. Gralla,et al.  Changes in the linking number of supercoiled DNA accompany growth transitions in Escherichia coli , 1987, Journal of bacteriology.

[43]  A. Gilles,et al.  Characterization of the calmodulin-binding and of the catalytic domains of Bordetella pertussis adenylate cyclase. , 1989, The Journal of biological chemistry.

[44]  R. Rappuoli,et al.  Families of bacterial signal‐transducing proteins , 1989, Molecular microbiology.

[45]  H. Hennecke,et al.  Effect of cyclic guanosine 3',5'-monophosphate on nitrogen fixation in Rhizobium japonicum , 1979, Journal of bacteriology.

[46]  M. Inouye,et al.  Interactions of cAMP receptor protein with the ompA gene, a gene for a major outer membrane protein of Escherichia coli , 1981 .

[47]  G. Kuehn,et al.  Calmodulin-like protein from Bacillus subtilis. , 1986, Biochemical and biophysical research communications.

[48]  H. Buc,et al.  Cyclic AMP receptor protein: role in transcription activation. , 1984, Science.

[49]  D. Crothers,et al.  The DNA binding domain and bending angle of E. coli CAP protein , 1986, Cell.

[50]  F. O'Gara,et al.  Expression of the adenyl cyclase-encoding gene (cya) of Rhizobium meliloti F34: existence of two cya genes? , 1989, Gene.

[51]  E. Hanski,et al.  Bordetella pertussis adenylate cyclase: purification and characterization of the toxic form of the enzyme. , 1989, The EMBO journal.

[52]  H. Buc,et al.  Mutations that alter the ability of the Escherichia coli cyclic AMP receptor protein to activate transcription. , 1990, Nucleic acids research.

[53]  S. Leppla,et al.  Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Suhail Ahmad,et al.  Influence of cyclic AMP on the incorporation of [1-14C]acetate into lipids of whole cells and spheroplasts of Mycobacterium smegmatis ATCC14468 , 1981 .

[55]  C. Ushida,et al.  Helical phase dependent action of CRP: effect of the distance between the CRP site and the -35 region on promoter activity. , 1990, Nucleic acids research.

[56]  Organization of the adenyl cyclase (cya) locus of Rhizobium meliloti. , 1986, Gene.

[57]  The catabolite-sensitive promoter for the chloramphenicol acetyl transferase gene is preceded by two binding sites for the catabolite gene activator protein , 1982, Journal of bacteriology.

[58]  A. Danchin,et al.  Structural homology between virulence-associated bacterial adenylate cyclases. , 1988, Gene.

[59]  W. Hillen,et al.  Ligand-modulated binding of a gene regulatory protein to DNA. Quantitative analysis of cyclic-AMP induced binding of CRP from Escherichia coli to non-specific and specific DNA targets. , 1989, Journal of molecular biology.

[60]  D. Storm,et al.  Isolation of a protein fraction from Bordetella pertussis that facilitates entry of the calmodulin-sensitive adenylate cyclase into animal cells. , 1989, Biochemistry.

[61]  D. Dietzler,et al.  Evidence that cyclic AMP stimulates bacterial glycogen synthesis by relieving AMP inhibition of and by increasing the cellular level of ADP-glucose synthetase. , 1984, Archives of Biochemistry and Biophysics.

[62]  J. Ownby,et al.  Cyclic AMP interferes with pattern formation in the cyanobacterium Anabaena variabilis , 1981 .

[63]  Possible mechanism of the allosteric activation of cAMP receptor protein. , 1985, Biochemical and biophysical research communications.

[64]  C. Blanco,et al.  Identification of cyclic AMP-CRP binding sites in the intercistronic regulatory uxaCA-exuT region of Escherichia coli , 1986 .

[65]  S. Boyle,et al.  Transcription of the speC (ornithine decarboxylase) gene of Escherichia coli is repressed by cyclic AMP and its receptor protein. , 1986, Gene.

[66]  A. Danchin,et al.  Regulation of adenylate cyclase synthesis in Escherichia coli: nucleotide sequence of the control region. , 1983, The EMBO journal.

[67]  A Danchin,et al.  The ptsH, ptsI, and crr genes of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: a complex operon with several modes of transcription , 1988, Journal of bacteriology.

[68]  P. Cossart,et al.  Regulation of expression of the crp gene of Escherichia coli K-12: in vivo study , 1985, Journal of bacteriology.

[69]  O. Bârzu,et al.  Enzymatic synthesis of 3′:5′ cyclic AMP using Bordetella pertussis adenylate cyclase co-immobilized with calmodulin on agarose beads , 1988 .

[70]  J. Barbé,et al.  Regulation of ubiG gene expression in Escherichia coli , 1988, Journal of bacteriology.

[71]  P. Cossart,et al.  Cloning and sequence of the crp gene of Escherichia coli K 12. , 1982, Nucleic acids research.

[72]  S. Short,et al.  Studies on deo operon regulation in Escherichia coli: cloning and expression of the cytR structural gene. , 1984, Gene.

[73]  A. Sonenshein,et al.  Bacillus subtilis citB gene is regulated synergistically by glucose and glutamine , 1985, Journal of bacteriology.

[74]  M. Cyert,et al.  Putting it on and taking it off: Phosphoprotein phosphatase involvement in cell cycle regulation , 1989, Cell.

[75]  A. Nakazawa,et al.  Cyclic AMP-dependent initiation and rho-dependent termination of colicin E1 gene transcription. , 1983, The Journal of biological chemistry.

[76]  S. Artz,et al.  Mutations that affect transcription and cyclic AMP-CRP regulation of the adenylate cyclase gene (cya) of Salmonella typhimurium. , 1990, Genetics.

[77]  J. Preiss,et al.  Genetic regulation of glycogen biosynthesis in Escherichia coli: in vitro effects of cyclic AMP and guanosine 5'-diphosphate 3'-diphosphate and analysis of in vivo transcripts , 1989, Journal of bacteriology.

[78]  S. Prusiner,et al.  Adenosine 3':5'-cyclic monophosphate control of the enzymes of glutamine metabolism in Escherichia coli. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[79]  P. V. von Hippel,et al.  Selection of DNA binding sites by regulatory proteins. II. The binding specificity of cyclic AMP receptor protein to recognition sites. , 1988, Journal of molecular biology.

[80]  A. Danchin,et al.  Cloning and expression of mouse-brain calmodulin as an activator of Bordetella pertussis adenylate cyclase in Escherichia coli. , 1989, Gene.

[81]  P. Herrlich,et al.  Regulation of synthesis of a major outer membrane protein: cyclic AMP represses Escherichia coli protein III synthesis. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[82]  V. Stewart Nitrate respiration in relation to facultative metabolism in enterobacteria , 1988, Microbiological reviews.

[83]  S. Razin,et al.  Possible role of ATP and cyclic AMP in glass attachment of Mycoplasma pneumoniae , 1981 .

[84]  E. Hanski,et al.  Bordetella pertussis adenylate cyclase inactivation by the host cell. , 1989, The Biochemical journal.

[85]  Evidence for the presence of cyclic adenosine monophosphate in Bacillus subtilis , 1984 .

[86]  G. Unden,et al.  Cyclic AMP and anaerobic gene expression in E. coli , 1984, FEBS letters.

[87]  H. Aiba,et al.  Autoregulation of the Escherichia coli crp gene: CRP is a transcriptional repressor for its own gene , 1983, Cell.

[88]  R. Curtiss,et al.  Avirulent Salmonella typhimurium Δcya Δcrp oral vaccine strains expressing a streptococcal colonization and virulence antigen , 1988 .

[89]  M. Freundlich,et al.  Nucleotide sequence of the ilvB promoter-regulatory region: a biosynthetic operon controlled by attenuation and cyclic AMP. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[90]  S. Leppla Bacillus anthracis calmodulin-dependent adenylate cyclase: chemical and enzymatic properties and interactions with eucaryotic cells. , 1984, Advances in cyclic nucleotide and protein phosphorylation research.

[91]  K. Mckenney,et al.  Arginine substituted for leucine at position 195 produces a cyclic AMP-independent form of the Escherichia coli cyclic AMP receptor protein. , 1988, The Journal of biological chemistry.

[92]  R. Gunsalus,et al.  Transcription of the Escherichia coli fumarate reductase genes (frdABCD) and their coordinate regulation by oxygen, nitrate, and fumarate , 1985, Journal of bacteriology.

[93]  K. Mckenney,et al.  Structure-function analysis of three cAMP-independent forms of the cAMP receptor protein. , 1986, Journal of Biological Chemistry.

[94]  H. Weissbach,et al.  The in vitro expression of the gene for Escherichia coli ADP glucose pyrophosphorylase is stimulated by cyclic AMP and cyclic AMP receptor protein. , 1983, The Journal of biological chemistry.

[95]  E. Hewlett,et al.  Bordetella pertussis adenylate cyclase toxin and hemolytic activities require a second gene, cyaC, for activation , 1991, Journal of bacteriology.

[96]  Ju Liu,et al.  Regulation of Escherichia colil‐asparaginase II and l‐aspartase by the fnr gene‐product , 1987 .

[97]  D. Robertson,et al.  Relationships between the calmodulin-dependent adenylate cyclases produced by Bacillus anthracis and Bordetella pertussis. , 1988, Biochemical and biophysical research communications.

[98]  M. Dilworth,et al.  Catabolite Effects On Enzyme Induction And Substrate Utilization In Rhizobium leguminosarum , 1983 .

[99]  J. Gralla,et al.  DNA supercoiling promotes formation of a bent repression loop in lac DNA. , 1987, Journal of molecular biology.

[100]  Donald M. Crothers,et al.  Lac repressor is a transient gene-activating protein , 1987, Cell.

[101]  P. Valentin‐Hansen,et al.  Tandem CRP binding sites in the deo operon of Escherichia coli K‐12. , 1982, The EMBO journal.

[102]  A. Matin,et al.  Cellular levels, excretion, and synthesis rates of cyclic AMP in Escherichia coli grown in continuous culture , 1982, Journal of bacteriology.

[103]  H. Aiba,et al.  Molecular cloning and nucleotide sequencing of the gene for E. coli cAMP receptor protein. , 1982, Nucleic acids research.

[104]  R. Rappuoli,et al.  Bordetella parapertussis and Bordetella bronchiseptica contain transcriptionally silent pertussis toxin genes , 1987, Journal of bacteriology.

[105]  C. Higgins,et al.  DNA supercoiling and the anaerobic and growth phase regulation of tonB gene expression , 1988, Journal of bacteriology.

[106]  F. Gentile,et al.  Bordetella pertussis adenylate cyclase. Penetration into host cells. , 1988, European journal of biochemistry.

[107]  S. Adhya,et al.  Characterization of the binding of cAMP and cGMP to the CRP*598 mutant of the E. coli cAMP receptor protein. , 1990, Nucleic acids research.

[108]  W. Stender Cyclic adenosine 3':5'-monophosphate receptor protein: interaction with E. coli RNA polymerase. , 1980, Biochemical and biophysical research communications.

[109]  D. Feldheim,et al.  Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate:sugar phosphotransferase system and analysis of fructose (fru) operon expression in Salmonella typhimurium , 1990, Journal of bacteriology.

[110]  S. Adhya,et al.  Cyclic AMP-induced conformational change of cyclic AMP receptor protein (CRP): intragenic suppressors of cyclic AMP-independent CRP mutations , 1988, Journal of bacteriology.

[111]  Hen-Ming Wu,et al.  The locus of sequence-directed and protein-induced DNA bending , 1984, Nature.

[112]  S. Kumar Properties of adenyl cyclase and cyclic adenosine 3',5'-monophosphate receptor protein-deficient mutants of Escherichia coli , 1976, Journal of bacteriology.

[113]  J. Shiloach,et al.  Bordetella pertussis adenylate cyclase. Identification of multiple forms of the enzyme by antibodies. , 1988, The Journal of biological chemistry.

[114]  R. L. Uffen,et al.  Influence of cyclic AMP on photosynthetic development in Rhodospirillum rubrum , 1984, Journal of bacteriology.

[115]  D. Dripps,et al.  DNA bending induced by the catabolite activator protein allows ring formation of a 144 bp DNA. , 1987, Journal of biomolecular structure & dynamics.

[116]  H. Buc,et al.  Variations of intramolecular ligation rates allow the detection of protein‐induced bends in DNA. , 1986, The EMBO journal.

[117]  M. Fried,et al.  Co-operative interactions between the catabolite gene activator protein and the lac repressor at the lactose promoter. , 1990, Journal of molecular biology.

[118]  H. Aiba Transcription of the Escherichia coli adenylate cyclase gene is negatively regulated by cAMP-cAMP receptor protein. , 1985, The Journal of biological chemistry.

[119]  M. Saier,et al.  Regulation of genes coding for enzyme constituents of the bacterial phosphotransferase system , 1980, Journal of bacteriology.

[120]  R F Schleif,et al.  DNA looping and unlooping by AraC protein , 1990, Science.

[121]  A. Danchin,et al.  A Xanthomonas campestris pv. campestris protein similar to catabolite activation factor is involved in regulation of phytopathogenicity , 1990, Journal of bacteriology.

[122]  A. Datta,et al.  A new pleiotropic mutation causing defective carbohydrate uptake in Escherichia coli K-12: isolation, mapping, and preliminary characterization , 1988, Journal of bacteriology.

[123]  K. Okamoto,et al.  Mechanism for the autogenous control of the crp operon: transcriptional inhibition by a divergent RNA transcript. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[124]  J. H. Boom,et al.  Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid , 1987, Nature.

[125]  M. Saier Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. , 1989, Microbiological reviews.

[126]  J. Hoggett,et al.  Binding of the cyclic AMP receptor protein of Escherichia coli to RNA polymerase. , 1988, The Biochemical journal.

[127]  D. Pettijohn,et al.  Interaction of the Escherichia coli HU protein with DNA. Evidence for formation of nucleosome-like structures with altered DNA helical pitch. , 1986, Journal of molecular biology.

[128]  D. Crothers,et al.  Modulation of the stability of a gene-regulatory protein dimer by DNA and cAMP. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[129]  J. Guest,et al.  Activation of the lac Operon of Escherichia coli by a mutant FNR protein , 1987, Molecular microbiology.

[130]  T. Melton,et al.  Cloning and molecular characterization of csm mutations allowing expression of catabolite-repressible operons in the absence of exogenous cyclic AMP , 1986, Journal of bacteriology.

[131]  Y. Ohya,et al.  Transcriptional analysis of the flagellar regulon of Salmonella typhimurium , 1990, Journal of bacteriology.

[132]  S. Douthwaite,et al.  Tandem DNA‐bound cAMP‐CRP complexes are required for transcriptional repression of the deoP2 promoter by the CytR repressor in Escherichia coli , 1990, Molecular microbiology.

[133]  S. H. Shanblatt,et al.  Two catabolite activator protein molecules bind to the galactose promoter region of Escherichia coli in the presence of RNA polymerase. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[134]  A. Gunasekera,et al.  Consensus DNA site for the Escherichia coli catabolite gene activator protein (CAP): CAP exhibits a 450-fold higher affinity for the consensus DNA site than for the E. coli lac DNA site. , 1989, Nucleic acids research.

[135]  Y. Kassir,et al.  The adenylate cyclase/protein kinase cascade regulates entry into meiosis in Saccharomyces cerevisiae through the gene IME1. , 1990, The EMBO journal.

[136]  G. Weinstock,et al.  Temporal control of colicin E1 induction , 1987, Journal of bacteriology.

[137]  S. Iuchi,et al.  Hyperproduction of extracellular protease 1 in Vibrio parahaemolyticus mutants deficient in cyclic adenosine 3′,5′-monophosphate or its binding protein , 1983 .

[138]  J. L. Bostford Analysis of protein expression in response to osmotic stress in Escherichia coli. , 1990, FEMS microbiology letters.

[139]  A. Danchin,et al.  Secretion of cyclolysin, the calmodulin‐sensitive adenylate cyclase‐haemolysin bifunctional protein of Bordetella pertussis. , 1988, The EMBO journal.

[140]  Mechanism of CRP-mediated cya suppression in Escherichia coli , 1983, Journal of bacteriology.

[141]  J. Botsford Cyclic nucleotides in procaryotes. , 1981, Microbiological reviews.

[142]  J. Guest,et al.  Regulation and over-expression of the fnr gene of Escherichia coli. , 1987, Journal of general microbiology.

[143]  D. Dietzler,et al.  Independence of cyclic AMP and relA gene stimulation of glycogen synthesis in intact Escherichia coli cells , 1985, Journal of bacteriology.

[144]  R. Burgess,et al.  Cloning and in vivo and in vitro regulation of cyclic AMP-dependent carbon starvation genes from Escherichia coli , 1990, Journal of bacteriology.

[145]  D. Clark Regulation of fatty acid degradation in Escherichia coli: analysis by operon fusion , 1981, Journal of bacteriology.

[146]  P. Nilsson,et al.  Upstream activating sequences that are shared by two divergently transcribed operons mediate cAMP‐CRP regulation of pilus‐adhesin in Escherichia coli , 1989, Molecular microbiology.

[147]  R. Gunsalus,et al.  Oxygen, nitrate, and molybdenum regulation of dmsABC gene expression in Escherichia coli , 1989, Journal of bacteriology.

[148]  M. Ptashne,et al.  Mutants of the catabolite activator protein of Escherichia coli that are specifically deficient in the gene-activation function. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[149]  A. Cozzone Protein phosphorylation in prokaryotes. , 1989, Biochimie.

[150]  B. Ames,et al.  AppppA and related adenylylated nucleotides are synthesized as a consequence of oxidation stress , 1984, Cell.

[151]  H. Schweizer,et al.  Cloning and characterization of the aerobic sn-glycerol-3-phosphate dehydrogenase structural gene glpD of Escherichia coli K-12 , 1987, Journal of bacteriology.

[152]  R. Utsumi,et al.  Control mechanism of the Escherichia coli K-12 cell cycle is triggered by the cyclic AMP-cyclic AMP receptor protein complex , 1989, Journal of bacteriology.

[153]  P. H. Calcott Cyclic AMP and cyclic GMP control of synthesis of constitutive enzymes in Escherichia coli. , 1982, Journal of general microbiology.

[154]  D. Amikam,et al.  Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens , 1989, Journal of bacteriology.

[155]  Kevin Gaston,et al.  Stringent spacing requirements for transcription activation by CRP , 1990, Cell.

[156]  C. Yanofsky,et al.  tRNA(Trp) translation of leader peptide codon 12 and other factors that regulate expression of the tryptophanase operon , 1990, Journal of bacteriology.

[157]  A. Danchin,et al.  Identification of residues essential for catalysis and binding of calmodulin in Bordetella pertussis adenylate cyclase by site‐directed mutagenesis. , 1989, The EMBO journal.

[158]  A. Matin,et al.  Differential regulation by cyclic AMP of starvation protein synthesis in Escherichia coli , 1988, Journal of bacteriology.

[159]  C. DiRusso Primary sequence of the Escherichia coli fadBA operon, encoding the fatty acid-oxidizing multienzyme complex, indicates a high degree of homology to eucaryotic enzymes , 1990, Journal of bacteriology.

[160]  P. Leadlay,et al.  A bacterial calcium-binding protein homologous to calmodulin , 1987, Nature.

[161]  A. Danchin,et al.  Aspects of the regulation of adenylate cyclase synthesis in Escherichia coli K12. , 1988, Journal of general microbiology.

[162]  R. Brownlie,et al.  The effect of growth conditions on adenylate cyclase activity and virulence-related properties of Bordetella pertussis. , 1985, Journal of General Microbiology.

[163]  D. Griggs,et al.  Activation of expression of the Escherichia coli cir gene by an iron-independent regulatory mechanism involving cyclic AMP-cyclic AMP receptor protein complex , 1990, Journal of bacteriology.

[164]  N. Amrhein The Current Status of Cyclic Amp in Higher Plants , 1977 .

[165]  F. Neidhardt,et al.  Proteins induced by anaerobiosis in Escherichia coli , 1983, Journal of bacteriology.

[166]  I. Pastan,et al.  The Role of Cyclic AMP in Bacteria , 1971 .

[167]  S. Bose,et al.  Derepression of sporulation and synthesis of mycobacillin and dipicolinic acid by guanosine 3':5'-cyclic monophosphate under conditions of glucose repression in Bacillus subtilis. , 1985, Journal of general microbiology.

[168]  A. Matin,et al.  Starvation-induced cross protection against osmotic challenge in Escherichia coli , 1990, Journal of bacteriology.

[169]  F. Stutzenberger,et al.  Cyclic AMP phosphodiesterase in Thermomonospora curvata , 1987, Journal of bacteriology.

[170]  P. Leadlay,et al.  Isolation of a novel calcium‐binding protein from streptomyces erythreus , 1984 .

[171]  A. Ghosh,et al.  Reversal by cyclic AMP of the urea-induced inhibition of synthesis of a catabolite-repressible enzyme in Vibrio cholerae. , 1987, Journal of general microbiology.

[172]  Z. Farfel,et al.  The invasive adenylate cyclase of Bordetella pertussis. Properties and penetration kinetics. , 1987, The Biochemical journal.

[173]  S. Adhya,et al.  Positive control. , 1990, The Journal of biological chemistry.

[174]  E. Dassa,et al.  The acid phosphatase with optimum pH of 2.5 of Escherichia coli. Physiological and Biochemical study. , 1982, The Journal of biological chemistry.

[175]  P. Matsumura,et al.  Flagellar transcriptional activators FlbB and FlaI: gene sequences and 5' consensus sequences of operons under FlbB and FlaI control , 1988, Journal of bacteriology.

[176]  R. Utsumi,et al.  Negative regulation of adenylate cyclase gene (cya) expression by cyclic AMP-cyclic AMP receptor protein in Escherichia coli: studies with cya-lac protein and operon fusion plasmids , 1985, Journal of bacteriology.

[177]  D. Ahmad,et al.  A deficiency in cyclic AMP results in pH-sensitive growth of Escherichia coli K-12 , 1988, Journal of bacteriology.

[178]  J. Beckwith,et al.  Mechanism of activation of catabolite-sensitive genes: a positive control system. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[179]  A. Ullmann,et al.  Properties of cyclic AMP-independent catabolite gene activator proteins of Escherichia coli. , 1986, The Journal of biological chemistry.

[180]  A. Danchin,et al.  Cloning and expression of the calmodulin-sensitive Bacillus anthracis adenylate cyclase in Escherichia coli. , 1988, Gene.

[181]  K. Mckenney,et al.  Translational efficiency of the Escherichia coli adenylate cyclase gene: mutating the UUG initiation codon to GUG or AUG results in increased gene expression. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[182]  B. Wanner,et al.  Overlapping and separate controls on the phosphate regulon in Escherichia coli K12. , 1983, Journal of molecular biology.

[183]  B. L. Taylor,et al.  Evidence against direct involvement of cyclic GMP or cyclic AMP in bacterial chemotactic signaling , 1986, Journal of bacteriology.

[184]  N. Guiso,et al.  Evidence for the presence of cAMP, cAMP receptor and transcription termination factor rho in different gram-negative bacteria. , 1985, Journal of general microbiology.

[185]  S Henikoff,et al.  A large family of bacterial activator proteins. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[186]  V. de Lorenzo,et al.  Fur (ferric uptake regulation) protein and CAP (catabolite-activator protein) modulate transcription of fur gene in Escherichia coli. , 1988, European journal of biochemistry.

[187]  F. Stutzenberger,et al.  Cellulase biosynthesis in a catabolite repression-resistant mutant of Thermomonospora curvata , 1984, Applied and environmental microbiology.

[188]  R. Gunsalus,et al.  Identification of a second gene involved in global regulation of fumarate reductase and other nitrate-controlled genes for anaerobic respiration in Escherichia coli , 1989, Journal of bacteriology.

[189]  B. Ames,et al.  An apaH mutation causes AppppA to accumulate and affects motility and catabolite repression in Escherichia coli. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[190]  J. Adler,et al.  Adenylate cyclase is required for chemotaxis to phosphotransferase system sugars by Escherichia coli , 1983, Journal of bacteriology.

[191]  S. Busby,et al.  Transcription from the Escherichia coli melR promoter is dependent on the cyclic AMP receptor protein. , 1988, Gene.

[192]  D. Clark,et al.  Glucose repression of anaerobic genes of Escherichia coli is independent of cyclic AMP , 1988 .

[193]  I. Beacham,et al.  Analysis of the Escherichia coli gene encoding L-asparaginase II, ansB, and its regulation by cyclic AMP receptor and FNR proteins , 1990, Journal of bacteriology.

[194]  F. O'Gara,et al.  Catabolite repression and role of cyclic AMP in CO2 fixation and H2 metabolism in Rhizobium spp , 1985, Journal of bacteriology.

[195]  K. Fukunaga,et al.  Calmodulin-like activity in the soluble fraction of Escherichia coli. , 1981, Biochemical and biophysical research communications.

[196]  S. Douthwaite,et al.  Design of camp–CRP‐activated promoters in Escherichia coli , 1991, Molecular microbiology.

[197]  Transcription of pfl is regulated by anaerobiosis, catabolite repression, pyruvate, and oxrA: pfl::Mu dA operon fusions of Salmonella typhimurium , 1989, Journal of bacteriology.

[198]  N. Pace,et al.  The occurrence of cyclic AMP in archaebacteria. , 1986, Biochemical and biophysical research communications.

[199]  J. Foster,et al.  Global control in Salmonella typhimurium: two-dimensional electrophoretic analysis of starvation-, anaerobiosis-, and heat shock-inducible proteins , 1986, Journal of bacteriology.

[200]  D. K. Hawley,et al.  Compilation and analysis of Escherichia coli promoter DNA sequences. , 1983, Nucleic acids research.

[201]  E. Veltkamp,et al.  The nucleotide sequence of the bacteriocin promoters of plasmids Clo DF13 and Co1 E1: role of lexA repressor and cAMP in the regulation of promoter activity. , 1982, Nucleic acids research.

[202]  S. Adhya,et al.  Sites of allosteric shift in the structure of the cyclic AMP receptor protein , 1985, Cell.

[203]  R. Wells,et al.  Supercoiling facilitates lac operator-repressor-pseudooperator interactions. , 1987, The Journal of biological chemistry.

[204]  A. Vogler,et al.  Molecular mechanisms of bacterial chemotaxis towards PTS-carbohydrates. , 1989, FEMS microbiology reviews.

[205]  Robert L. Perlman,et al.  Purification of and Properties of the Cyclic Adenosine 3',5'-Monophosphate Receptor Protein which Mediates Cyclic Adenosine 3',5'-Monophosphate-dependent Gene Transcription in Escherichia coli , 1971 .

[206]  D. Crothers,et al.  Comparative gel electrophoresis measurement of the DNA bend angle induced by the catabolite activator protein , 1990, Biopolymers.

[207]  D M Crothers,et al.  Synergy between Escherichia coli CAP protein and RNA polymerase in the lac promoter open complex. , 1989, Journal of molecular biology.

[208]  S. Artz,et al.  Analysis of sequence elements important for expression and regulation of the adenylate cyclase gene (cya) of Salmonella typhimurium. , 1990, Genetics.

[209]  F. Stutzenberger,et al.  Cyclic AMP levels during induction and repression of cellulase biosynthesis in Thermomonospora curvata , 1984, Journal of bacteriology.

[210]  H. Goldie Regulation of transcription of the Escherichia coli phosphoenolpyruvate carboxykinase locus: studies with pck-lacZ operon fusions , 1984, Journal of bacteriology.

[211]  J. Liu,et al.  Isolation and sequence analysis of the gene (cpdB) encoding periplasmic 2',3'-cyclic phosphodiesterase , 1986, Journal of bacteriology.

[212]  J. Monod,et al.  SOS-independent coupling between DNA replication and cell division in Escherichia coli , 1986, Journal of bacteriology.

[213]  A. Vogler,et al.  Involvement of the histidine protein (HPr) of the phosphotransferase system in chemotactic signaling of Escherichia coli K-12 , 1990, Journal of bacteriology.

[214]  P. Loewen,et al.  Regulation of transcription of katE and katF in Escherichia coli , 1990, Journal of bacteriology.

[215]  J. Lee,et al.  Escherichia coli cAMP receptor protein: evidence for three protein conformational states with different promoter binding affinities. , 1989, Biochemistry.

[216]  R. Utsumi,et al.  Expression of the adenylate cyclase gene during cell elongation in Escherichia coli K-12 , 1986, Journal of bacteriology.

[217]  R. Bender,et al.  Regulation of hutUH operon expression by the catabolite gene activator protein-cyclic AMP complex in Klebsiella aerogenes , 1984, Journal of bacteriology.

[218]  M. Ptashne A Genetic Switch , 1986 .

[219]  D. Crothers,et al.  Sequence-dependent contribution of distal binding domains to CAP protein-DNA binding affinity. , 1991, Nucleic acids research.

[220]  S. Jovanovich Regulation of a cya-lac fusion by cyclic AMP in Salmonella typhimurium , 1985, Journal of bacteriology.

[221]  K. G. Surowitz,et al.  Variations in levels of cAMP, DNA and RNA in Streptomyces alboniger under conditions of aerial mycelium formation and repression , 1985 .

[222]  B. Staskawicz,et al.  Molecular cloning of pectate lyase genes from Erwinia chrysanthemi and their expression in Escherichia coli , 1984, Journal of bacteriology.

[223]  R. Guerrero,et al.  Cyclic adenosine 3′,5′-monophosphate in Rhodopseudomonas capsulata , 1983 .

[224]  A. Danchin,et al.  Cyclic AMP synthesis in Escherichia coli strains bearing known deletions in the pts phosphotransferase operon. , 1990, Gene.

[225]  G. Condemine,et al.  Isolation of Erwinia chrysanthemi kduD mutants altered in pectin degradation , 1986, Journal of bacteriology.

[226]  E. Aberdam,et al.  Maintenance of meiotic arrest in isolated rat oocytes by the invasive adenylate cyclase of Bordetella pertussis. , 1987, Biology of reproduction.

[227]  A. Middendorf,et al.  Double negative and positive control of tsx expression in Escherichia coli , 1988, Journal of bacteriology.

[228]  D. Rice,et al.  Homology between CAP and Fnr, a regulator of anaerobic respiration in Escherichia coli. , 1983, Journal of molecular biology.

[229]  D. Vidal-Ingigliardi,et al.  A complex nucleoprotein structure involved in activation of transcription of two divergent Escherichia coli promoters. , 1989, Journal of molecular biology.

[230]  L. Stoltzfus,et al.  Effect of mutations in the cyclic AMP receptor protein-binding site on araBAD and araC expression , 1989, Journal of bacteriology.

[231]  S. Inouye,et al.  Structural similarities between the development-specific protein S from a gram-negative bacterium, Myxococcus xanthus, and calmodulin. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[232]  S. Douthwaite,et al.  The CytR repressor antagonizes cyclic AMP-cyclic AMP receptor protein activation of the deoCp2 promoter of Escherichia coli K-12 , 1990, Journal of bacteriology.

[233]  R. Lagos,et al.  Phasmid P4: manipulation of plasmid copy number and induction from the integrated state , 1984, Journal of bacteriology.

[234]  J. Foster,et al.  Identification and characterization of starvation-regulated genetic loci in Salmonella typhimurium by using Mu d-directed lacZ operon fusions , 1988, Journal of bacteriology.

[235]  E. Hewlett,et al.  Adenylate cyclase toxin from Bordetella pertussis. Identification and purification of the holotoxin molecule. , 1989, The Journal of biological chemistry.

[236]  A. Vogler,et al.  Indirect role of adenylate cyclase and cyclic AMP in chemotaxis to phosphotransferase system carbohydrates in Escherichia coli K-12 , 1987, Journal of bacteriology.

[237]  J. Delaney A cya deletion mutant of Escherichia coli develops thermotolerance but does not exhibit a heat-shock response. , 1990, Genetical research.

[238]  R. Rappuoli,et al.  Positive regulation of pertussis toxin expression. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[239]  R. Utsumi,et al.  Involvement of cyclic AMP and its receptor protein in filamentation of an Escherichia coli fic mutant , 1982, Journal of bacteriology.

[240]  W. Dobrogosz,et al.  Effects of aerobic and anaerobic shock on catabolite repression in cyclic AMP suppressor mutants of Escherichia coli , 1983, Journal of bacteriology.

[241]  W. Dobrogosz,et al.  The effect of cyclic AMP on anaerobic growth of Escherichia coli. , 1973, Biochemical and biophysical research communications.

[242]  R. Friedman Bordetella pertussis adenylate cyclase: isolation and purification by calmodulin-sepharose 4B chromatography , 1987, Infection and immunity.

[243]  D. Kahn,et al.  fixK, a gene homologous with fnr and crp from Escherichia coli, regulates nitrogen fixation genes both positively and negatively in Rhizobium meliloti. , 1989, The EMBO journal.

[244]  Jay D. Gralla,et al.  DNA dynamic flexibility and protein recognition: Differential stimulation by bacterial histone-like protein HU , 1988, Cell.

[245]  N. Nanninga,et al.  The intracellular concentration of cyclic adenosine 3′,5′-monophosphate is constant throughout the cell cycle of Escherichia coli , 1984 .

[246]  B. Magasanik,et al.  Expression of glnA in Escherichia coli is regulated at tandem promoters. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[247]  J. Foster,et al.  pH‐regulated gene expression in Salmonella: genetic analysis of aniG and cloning of the earA regulator , 1989, Molecular microbiology.

[248]  L. Bracco,et al.  Synthetic curved DNA sequences can act as transcriptional activators in Escherichia coli. , 1989, The EMBO journal.

[249]  P. Valentin‐Hansen,et al.  CRP/cAMP‐ and CytR‐regulated promoters in Escherichia coli K12: the cdd promoter , 1989, Molecular microbiology.

[250]  H. Aiba,et al.  Mutations that alter the allosteric nature of cAMP receptor protein of Escherichia coli. , 1985, EMBO Journal.

[251]  H. Aiba,et al.  Evidence for negative control of cya transcription by cAMP and cAMP receptor protein in intact Escherichia coli cells. , 1985, The Journal of biological chemistry.

[252]  Reconstitution of regulatory properties of adenylate cyclase in Escherichia coli extracts. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[253]  J. Ammerman,et al.  Uptake of Cyclic AMP by Natural Populations of Marine Bacteria , 1982, Applied and environmental microbiology.

[254]  M. Guerinot,et al.  Isolation and expression of the Bradyrhizobium japonicum adenylate cyclase gene (cya) in Escherichia coli , 1984, Journal of bacteriology.

[255]  M. Saier Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate: sugar phosphotransferase system , 1989 .

[256]  J. Hacker,et al.  Use of a wild-type gene fusion to determine the influence of environmental conditions on expression of the S fimbrial adhesin in an Escherichia coli pathogen , 1990, Journal of bacteriology.

[257]  E. Hewlett,et al.  Adenylate cyclase toxins from Bacillus anthracis and Bordetella pertussis. Different processes for interaction with and entry into target cells. , 1989, The Journal of biological chemistry.

[258]  A. Pradet,et al.  Artefactual Origins of Cyclic AMP in Higher Plant Tissues. , 1989, Plant physiology.

[259]  Z. Farfel,et al.  The invasive adenylate cyclase of Bordetella pertussis. Intracellular localization and kinetics of penetration into various cells. , 1987, The Biochemical journal.

[260]  D. Storm,et al.  Mechanisms of bacterial pathogenicity that involve production of calmodulin-sensitive adenylate cyclases. , 1987, Microbiological reviews.

[261]  P. Bouloc,et al.  Cyclic AMP and cell division in Escherichia coli , 1988, Journal of bacteriology.

[262]  D. Storm,et al.  Site-directed mutagenesis of lysine 58 in a putative ATP-binding domain of the calmodulin-sensitive adenylate cyclase from Bordetella pertussis abolishes catalytic activity. , 1989, Biochemistry.

[263]  A. Landoulsi,et al.  A novel role for cAMP in the control of the activity of the E. coli chromosome replication initiator protein, DnaA , 1988, Cell.

[264]  H. Aiba,et al.  Transcriptional terminator is a positive regulatory element in the expression of the Escherichia coli crp gene. , 1991, The Journal of biological chemistry.

[265]  F. Gentile,et al.  Extracellular cAMP formation from host cell ATP by Bordetella pertussis adenylate cyclase. , 1988, Biochimica et biophysica acta.

[266]  A. Dopazo,et al.  The native form of FtsA, a septal protein of Escherichia coli, is located in the cytoplasmic membrane , 1990, Journal of bacteriology.

[267]  L. Loeb,et al.  Structure-function relationships in Escherichia coli promoter DNA. , 1990, Progress in nucleic acid research and molecular biology.

[268]  J. Gralla,et al.  Activation of the lac promoter and its variants. Synergistic effects of catabolite activator protein and supercoiling in vitro. , 1989, Journal of molecular biology.

[269]  E. Hewlett,et al.  Inhibitors of receptor-mediated endocytosis block the entry of Bacillus anthracis adenylate cyclase toxin but not that of Bordetella pertussis adenylate cyclase toxin , 1988, Infection and immunity.

[270]  A. Danchin,et al.  Positive regulation of the pts operon of Escherichia coli: genetic evidence for a signal transduction mechanism , 1991, Journal of Bacteriology.

[271]  P. Dunlap,et al.  Control of Vibrio fischeri luminescence gene expression in Escherichia coli by cyclic AMP and cyclic AMP receptor protein , 1985, Journal of bacteriology.

[272]  D. Robertson,et al.  Molecular cloning and expression of the Bacillus anthracis edema factor toxin gene: a calmodulin-dependent adenylate cyclase , 1988, Journal of bacteriology.

[273]  F. Azam,et al.  Characteristics of Cyclic AMP Transport by Marine Bacteria , 1987, Applied and environmental microbiology.

[274]  S. Adhya,et al.  Cooperative DNA binding of heterologous proteins: evidence for contact between the cyclic AMP receptor protein and RNA polymerase. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[275]  R. Wartell,et al.  Investigation of the cAMP receptor protein secondary structure by Raman spectroscopy. , 1990, Biochemistry.

[276]  J. Barton,et al.  Generation of deletions in the 3'-flanking sequences of the Escherichia coli crp gene that induce cyclic AMP suppressor functions , 1987, Journal of bacteriology.

[277]  J. Dahlberg,et al.  Cyclic AMP-cyclic AMP receptor protein as a repressor of transcription of the spf gene of Escherichia coli , 1988, Journal of bacteriology.

[278]  R. Utsumi,et al.  Isolation of a cAMP‐requiring mutant in Escherichia coli K‐12: evidence of growth regulation via N‐acetylglucosamine metabolism controlled by cAMP , 1988 .

[279]  H. Buc,et al.  Positive regulation of gene expression by cyclic AMP and its receptor protein in Escherichia coli. , 1987, Microbiological sciences.

[280]  J. Muschietti,et al.  Adenylate cyclase activity in cyanobacteria: activation by Ca(2+)-calmodulin and a calmodulin-like activity. , 1990, Biochimica et biophysica acta.

[281]  N. Gutterson,et al.  Multiple antibiotics produced by Pseudomonas fluorescens HV37a and their differential regulation by glucose , 1986, Applied and environmental microbiology.

[282]  A. Danchin,et al.  Characterization of Escherichia coli adenylate cyclase mutants with modified regulation. , 1990, Journal of general microbiology.

[283]  J. Botsford Cyclic AMP phosphodiesterase in Salmonella typhimurium: characteristics and physiological function , 1984, Journal of bacteriology.

[284]  P. Dunlap,et al.  Control of Vibrio fischeri lux gene transcription by a cyclic AMP receptor protein-luxR protein regulatory circuit , 1988, Journal of bacteriology.

[285]  B. L. Jones,et al.  Inhibition of growth of Rhizobium japonicum by cyclic GMP , 1985, Journal of bacteriology.

[286]  A. Danchin,et al.  The calmodulin-sensitive adenylate cyclase of Bordetella pertussis: cloning and expression in Escherichia coli. , 1988, Molecular microbiology.

[287]  R. Utsumi,et al.  Nucleotide sequences of fic and fic-1 genes involved in cell filamentation induced by cyclic AMP in Escherichia coli , 1989, Journal of bacteriology.

[288]  T. Goss,et al.  Escherichia coli K-12 mutation that inactivates biodegradative threonine dehydratase by transposon Tn5 insertion , 1984, Journal of bacteriology.

[289]  J. Lopes,et al.  Physical identification of an internal promoter, ilvAp, in the distal portion of the ilvGMEDA operon. , 1989, Gene.

[290]  K. Okamoto,et al.  Evidence in vivo for autogenous control of the cyclic AMP receptor protein gene (crp) in Escherichia coli by divergent RNA , 1988, Journal of bacteriology.

[291]  C. Zwieb,et al.  Bending of DNA by gene-regulatory proteins: construction and use of a DNA bending vector. , 1989, Gene.

[292]  S. Kustu,et al.  Expression of sigma 54 (ntrA)-dependent genes is probably united by a common mechanism. , 1989, Microbiological reviews.

[293]  S. Adhya,et al.  Cyclic-AMP-dependent switch in initiation of transcription from the two promoters of the Escherichia coli gal operon: identification and assay of 5'-triphosphate ends of mRNA by GTP:RNA guanyltransferase , 1989, Journal of bacteriology.

[294]  M. Rosenberg,et al.  A promoter of pBR322 activated by cAMP receptor protein. , 1981, Nucleic acids research.

[295]  M. Fried,et al.  A new DNA binding mode for CAP. , 1990, The Journal of biological chemistry.

[296]  Atsushi Nakazawa,et al.  Positive regulation of the colicin E1 gene by cyclic AMP and cyclic AMP receptor protein , 1985, Nucleic Acids Res..

[297]  Record Mt,et al.  Stable DNA Loops in Vivo and in Vitro: Roles in Gene Regulation at a Distance and in Biophysical Characterization of DNA , 1990 .

[298]  D. Storm,et al.  Characterization of the bacterial cell associated calmodulin-sensitive adenylate cyclase from Bordetella pertussis. , 1989, Biochemistry.

[299]  S. Lim,et al.  Identification and characterization of a third form (D3) of cyclic 3'5'-nucleotide phosphodiesterase from rhizobwm fredii , 1989 .

[300]  S. Leppla,et al.  Nucleotide sequence of the Bacillus anthracis edema factor gene (cya): a calmodulin-dependent adenylate cyclase. , 1988, Gene.

[301]  B. Ames,et al.  AppppA, heat-shock stress, and cell oxidation. , 1983, Proceedings of the National Academy of Sciences of the United States of America.