Computing optimal low-rank matrix approximations for image processing
暂无分享,去创建一个
[1] J. Hadamard,et al. Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .
[2] Timothy J. Schulz,et al. Multiframe blind deconvolution of astronomical images , 1993 .
[3] G. W. Stewart,et al. Matrix Algorithms: Volume 1, Basic Decompositions , 1998 .
[4] Alexander Shapiro,et al. Lectures on Stochastic Programming: Modeling and Theory , 2009 .
[5] C. Vogel. Optimal choice of a truncation level for the truncated SVD solution of linear first kind integral equations when data are noisy , 1986 .
[6] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[7] P. Hansen. Discrete Inverse Problems: Insight and Algorithms , 2010 .
[8] Dianne P. O'Leary,et al. Designing Optimal Spectral Filters for Inverse Problems , 2011, SIAM J. Sci. Comput..
[9] Anatoli Torokhti,et al. Generalized Rank-Constrained Matrix Approximations , 2007, SIAM J. Matrix Anal. Appl..
[10] K. Egiazarian,et al. Blind image deconvolution , 2007 .
[11] Gene H. Golub,et al. Matrix computations , 1983 .
[12] Jean-Luc Starck,et al. Deconvolution and Blind Deconvolution in Astronomy , 2007 .