Modeling machine learning requirements from three perspectives: a case report from the healthcare domain

[1]  Jennifer Horkoff,et al.  Non-Functional Requirements for Machine Learning: Challenges and New Directions , 2019, 2019 IEEE 27th International Requirements Engineering Conference (RE).

[2]  Andreas Vogelsang,et al.  Requirements Engineering for Machine Learning: Perspectives from Data Scientists , 2019, 2019 IEEE 27th International Requirements Engineering Conference Workshops (REW).

[3]  Monica Chiarini Tremblay,et al.  Using Conceptual Modeling to Support Machine Learning , 2019, CAiSE Forum.

[4]  Eric S. K. Yu,et al.  Solution Patterns for Machine Learning , 2019, CAiSE.

[5]  Xiaotong Liu,et al.  Characterizing machine learning process: A maturity framework , 2018, BPM.

[6]  Eric S. K. Yu,et al.  Business-driven data analytics: A conceptual modeling framework , 2018, Data Knowl. Eng..

[7]  Eric Yu,et al.  Designing Business Analytics Solutions , 2018, Business & Information Systems Engineering.

[8]  Eric S. K. Yu,et al.  Conceptual Modeling for Business Analytics: A Framework and Potential Benefits , 2017, 2017 IEEE 19th Conference on Business Informatics (CBI).

[9]  Martin Bichler,et al.  Business Analytics and Data Science: Once Again? , 2017, Bus. Inf. Syst. Eng..

[10]  Veda C. Storey,et al.  Big data technologies and Management: What conceptual modeling can do , 2017, Data Knowl. Eng..

[11]  Eric S. K. Yu,et al.  A Conceptual Modeling Framework for Business Analytics , 2016, ER.

[12]  Lin Liu,et al.  Requirements Engineering for Health Data Analytics: Challenges and Possible Directions , 2016, 2016 IEEE 24th International Requirements Engineering Conference (RE).

[13]  Rick Kazman,et al.  Agile Big Data Analytics for Web-Based Systems: An Architecture-Centric Approach , 2016, IEEE Transactions on Big Data.

[14]  Jennifer Horkoff,et al.  Interactive goal model analysis for early requirements engineering , 2016, Requirements Engineering.

[15]  Veda C. Storey,et al.  Research on conceptual modeling: Themes, topics, and introduction to the special issue , 2015, Data Knowl. Eng..

[16]  John Mylopoulos,et al.  Reasoning with Key Performance Indicators , 2011, PoEM.

[17]  John Mylopoulos,et al.  Strategic Models for Business Intelligence , 2011, ER.

[18]  J. Trujillo,et al.  ETL Process Modeling Conceptual for Data Warehouses: A Systematic Mapping Study , 2011, IEEE Latin America Transactions.

[19]  Keng Siau,et al.  Evaluation techniques for systems analysis and design modelling methods – a review and comparative analysis , 2011, Inf. Syst. J..

[20]  Eric Yu,et al.  Social Modeling for Requirements Engineering , 2011, Cooperative information systems.

[21]  John Mylopoulos,et al.  Enterprise Modeling for Business Intelligence , 2010, PoEM.

[22]  Paolo Giorgini,et al.  GRAnD: A goal-oriented approach to requirement analysis in data warehouses , 2008, Decis. Support Syst..

[23]  Jose-Norberto Mazón,et al.  A Model-Driven Goal-Oriented Requirement Engineering Approach for Data Warehouses , 2007, ER Workshops.

[24]  MusílekPetr,et al.  A survey of Knowledge Discovery and Data Mining process models , 2006 .

[25]  Panos Vassiliadis,et al.  Conceptual modeling for ETL processes , 2002, DOLAP '02.

[26]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..

[27]  Jon Kleinberg,et al.  Algorithms Need Managers, Too , 2016 .

[28]  Daniela E. Damian,et al.  Selecting Empirical Methods for Software Engineering Research , 2008, Guide to Advanced Empirical Software Engineering.