A new class of exponential propagation iterative methods of Runge-Kutta type (EPIRK)

We propose a new class of the exponential propagation iterative methods of Runge-Kutta-type (EPIRK). The EPIRK schemes are exponential integrators that can be competitive with explicit and implicit methods for integration of large stiff systems of ODEs. Introducing the new, more general than previously proposed, ansatz for EPIRK schemes allows for more flexibility in deriving computationally efficient high-order integrators. Recent extension of the theory of B-series to exponential integrators [1] is used to derive classical order conditions for schemes up to order five. An algorithm to systematically solve these conditions is presented and several new fifth order schemes are constructed. Several numerical examples are used to verify the order of the methods and to illustrate the performance of the new schemes.

[1]  John C. Butcher Trees, B-series and exponential integrators , 2010 .

[2]  Marlis Hochbruck,et al.  Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005, SIAM J. Numer. Anal..

[3]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[4]  Andr'e Nauts,et al.  New Approach to Many-State Quantum Dynamics: The Recursive-Residue-Generation Method , 1983 .

[5]  H. Munthe-Kaas,et al.  Computations in a free Lie algebra , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  S. Cox,et al.  Exponential Time Differencing for Stiff Systems , 2002 .

[7]  L. Tuckerman,et al.  A method for exponential propagation of large systems of stiff nonlinear differential equations , 1989 .

[8]  Elena Celledoni,et al.  Commutator-free Lie group methods , 2003, Future Gener. Comput. Syst..

[9]  J. D. Lawson Generalized Runge-Kutta Processes for Stable Systems with Large Lipschitz Constants , 1967 .

[10]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[11]  Mayya Tokman,et al.  Comparative performance of exponential, implicit, and explicit integrators for stiff systems of ODEs , 2013, J. Comput. Appl. Math..

[12]  J. M. Keiser,et al.  A New Class of Time Discretization Schemes for the Solution of Nonlinear PDEs , 1998 .

[13]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[14]  Marlis Hochbruck,et al.  Exponential Integrators for Large Systems of Differential Equations , 1998, SIAM J. Sci. Comput..

[15]  A. Ostermann,et al.  A Class of Explicit Exponential General Linear Methods , 2006 .

[16]  Roger B. Sidje,et al.  Expokit: a software package for computing matrix exponentials , 1998, TOMS.

[17]  Y. Saad Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .

[18]  Yousef Saad,et al.  Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..

[19]  Marlis Hochbruck,et al.  Exponential Rosenbrock-Type Methods , 2008, SIAM J. Numer. Anal..

[20]  I. N. Sneddon,et al.  The Solution of Ordinary Differential Equations , 1987 .

[21]  T. Park,et al.  Unitary quantum time evolution by iterative Lanczos reduction , 1986 .

[22]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[23]  David A. Pope An exponential method of numerical integration of ordinary differential equations , 1963, CACM.

[24]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[25]  Mayya Tokman,et al.  Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods , 2006, J. Comput. Phys..

[26]  Brynjulf Owren,et al.  B-series and Order Conditions for Exponential Integrators , 2005, SIAM J. Numer. Anal..

[27]  K. Fister,et al.  Optimal Control of a Cancer Cell Model with Delay , 2010 .

[28]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[29]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[30]  Nellie Clarke Brown Trees , 1896, Savage Dreams.

[31]  John C. Butcher,et al.  An algebraic theory of integration methods , 1972 .

[32]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[33]  H. V. D. Vorst,et al.  An iterative solution method for solving f ( A ) x = b , using Krylov subspace information obtained for the symmetric positive definite matrix A , 1987 .

[34]  Stephen K. Scott,et al.  Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Oscillations and instabilities in the system A + 2B → 3B; B → C , 1984 .

[35]  A. Friedli Verallgemeinerte Runge-Kutta Verfahren zur Loesung steifer Differentialgleichungssysteme , 1978 .

[36]  S. Krogstad Generalized integrating factor methods for stiff PDEs , 2005 .

[37]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[38]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[39]  Mayya Tokman,et al.  Efficient design of exponential-Krylov integrators for large scale computing , 2010, ICCS.

[40]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[41]  Jitse Niesen,et al.  Algorithm 919: A Krylov Subspace Algorithm for Evaluating the ϕ-Functions Appearing in Exponential Integrators , 2009, TOMS.

[42]  Jonathan A. Sherratt,et al.  On the Form of Smooth-Front Travelling Waves in a Reaction-Diffusion Equation with Degenerate Nonlinear Diffusion , 2010 .