Three-dimensional sparse seismic deconvolution based on earth Q model

Abstract We propose a multichannel efficient method for recovery of three-dimensional (3D) reflectivity signal from 3D seismic data. The algorithm consists of solving convex constrained optimization problems that promote the sparsity of the solution. It is formulated so that it fits the earth Q model that describes the attenuation and dispersion propagation effects of reflected waves. At the same time, the method also takes into account the relations between spatially-neighboring traces. These three features together with low computational cost make the proposed method a reliable solution for the emerging need to accurately estimate reflectivity from large volumes of 3D seismic data. We also derive a theoretical bound on the recovery error in the case of horizontal layered sub-terrain. We show that the recovery error is inversely proportional to the number of traces taken into account in the estimation process. Synthetic and real data examples demonstrate the robustness of the proposed technique compared to single-channel recovery.

[1]  Guochang Liu,et al.  A novel nonstationary deconvolution method based on spectral modeling and variable-step sampling hyperbolic smoothing , 2014 .

[2]  Israel Cohen,et al.  Detection And Extraction of Fault Surfaces In 3-D Seismic Data , 2005 .

[3]  Doron Benzvi,et al.  Blind deconvolution via maximum kurtosis adaptive filtering , 2013, 2016 IEEE International Conference on the Science of Electrical Engineering (ICSEE).

[4]  Emmanuel J. Cand Towards a Mathematical Theory of Super-Resolution , 2012 .

[5]  Mauricio D. Sacchi,et al.  A Fast and Automatic Sparse Deconvolution in the Presence of Outliers , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Carlos Fernandez-Granda Support detection in super-resolution , 2013, ArXiv.

[7]  A. Chaouch,et al.  3-D Land Seismic Surveys: Definition of Geophysical Parameter , 2006 .

[8]  R. Tibshirani The Lasso Problem and Uniqueness , 2012, 1206.0313.

[9]  Caroline Chaux,et al.  A Primal-Dual Proximal Algorithm for Sparse Template-Based Adaptive Filtering: Application to Seismic Multiple Removal , 2014, IEEE Transactions on Signal Processing.

[10]  D. Donoho,et al.  Atomic Decomposition by Basis Pursuit , 2001 .

[11]  H. L. Taylor,et al.  Deconvolution with the l 1 norm , 1979 .

[12]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[13]  Yves Goussard,et al.  Multichannel seismic deconvolution , 1993, IEEE Trans. Geosci. Remote. Sens..

[14]  Ronald R. Coifman,et al.  Local discontinuity measures for 3-D seismic data , 2002 .

[15]  D. Donoho Superresolution via sparsity constraints , 1992 .

[16]  Jerry M. Mendel,et al.  A novel approach to seismic signal processing and modeling , 1981 .

[17]  Yanghua Wang,et al.  Seismic Inverse Q Filtering , 2008 .

[18]  Kurt J. Marfurt,et al.  Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping , 1999 .

[19]  Einar Kjartansson,et al.  Constant Q-wave propagation and attenuation , 1979 .

[20]  Yanghua Wang,et al.  A stable and efficient approach of inverse Q filtering , 2002 .

[21]  Thang H. Nguyen High resolution seismic reflectivity inversion , 2008 .

[22]  D. L. Donoho,et al.  Compressed sensing , 2006, IEEE Trans. Inf. Theory.

[23]  Israel Cohen,et al.  Multichannel blind seismic deconvolution using dynamic programming , 2008, Signal Process..

[24]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[25]  Emmanuel J. Candès,et al.  Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.

[26]  Tadeusz J. Ulrych,et al.  Processing via spectral modeling , 1991 .

[27]  T. J. Ulrych,et al.  Application of homomorphic deconvolution to seismology , 1971 .

[28]  Israel Cohen,et al.  Multichannel Deconvolution of Seismic Signals Using Statistical MCMC Methods , 2010, IEEE Transactions on Signal Processing.

[29]  David C. Henley,et al.  Gabor deconvolution: Estimating reflectivity by nonstationary deconvolution of seismic data , 2011 .

[30]  N. Ricker THE FORM AND NATURE OF SEISMIC WAVES AND THE STRUCTURE OF SEISMOGRAMS , 1940 .

[31]  Gabriel Peyré,et al.  Exact Support Recovery for Sparse Spikes Deconvolution , 2013, Foundations of Computational Mathematics.

[32]  Shai Dekel,et al.  Robust Recovery of Stream of Pulses using Convex Optimization , 2014, ArXiv.

[33]  C. Dossal SPARSE SPIKE DECONVOLUTION WITH MINIMUM SCALE , .

[34]  A. J. Berkhout,et al.  Resolution in seismic trace inversion by parameter estimation , 1985 .

[35]  Israel Cohen,et al.  Multichannel sparse spike inversion , 2017 .

[36]  Sanyi Yuan,et al.  Sparse reflectivity inversion for nonstationary seismic data , 2014 .

[37]  Shai Dekel,et al.  Stable Support Recovery of Stream of Pulses With Application to Ultrasound Imaging , 2015, IEEE Transactions on Signal Processing.

[38]  Jerry M. Mendel,et al.  Maximum likelihood detection and estimation of Bernoulli - Gaussian processes , 1982, IEEE Trans. Inf. Theory.

[39]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[40]  Kjetil F. Kaaresen,et al.  Multichannel blind deconvolution of seismic signals , 1998 .

[41]  Mauricio D. Sacchi,et al.  Fast 3D Blind Seismic Deconvolution via Constrained Total Variation and GCV , 2013, SIAM J. Imaging Sci..

[42]  Israel Cohen,et al.  Multichannel Semi-blind Deconvolution (MSBD) of seismic signals , 2017, Signal Process..

[43]  Israel Cohen,et al.  Seismic signal recovery based on Earth Q model , 2017, Signal Process..

[44]  Leiv-J. Gelius,et al.  INVERSE Q-FILTERING. A SPECTRAL BALANCING TECHNIQUE* , 1987 .

[45]  Tadeusz J. Ulrych,et al.  Estimation of quality factors from CMP records , 2002 .

[46]  R. Wiggins Minimum entropy deconvolution , 1978 .

[47]  Israel Cohen,et al.  Multichannel Seismic Deconvolution Using Markov–Bernoulli Random-Field Modeling , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[48]  Israel Cohen,et al.  Dynamic Programming For Multichannel Blind Seismic Deconvolution , 2007 .

[49]  Rui Zhang,et al.  Seismic sparse-layer reflectivity inversion using basis pursuit decomposition , 2011 .

[50]  Michael S. Bahorich,et al.  3-D seismic discontinuity for faults and stratigraphic features; the coherence cube , 1995 .

[51]  Yanghua Wang Frequencies of the Ricker wavelet , 2015 .

[52]  A. Berkhout,et al.  The seismic method in the search for oil and gas: Current techniques and future developments , 1986, Proceedings of the IEEE.

[53]  Jean-Christophe Pesquet,et al.  Euclid in a Taxicab: Sparse Blind Deconvolution with Smoothed ${\ell _1}/{\ell _2}$ Regularization , 2014, IEEE Signal Processing Letters.

[54]  Israel Cohen,et al.  Detection and extraction of fault surfaces in 3D seismic data , 2006 .

[55]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.