Target detecton and tracking via structured convex optimization

Moving target detection and tracking in reverberation environment is an important yet challenging problem in many applications such as speech, sonar, radar and seismic signal processing. Extending the early work of online subspace and sparse filtering [1], this paper presents an approach based on structured convex optimization. Exploiting potentially coherent structure of reverberation background, we represent the beamspace image data as the sum of a low-rank and a sparse matrix, where reverberation assumes low-rank structure and moving target signal is modeled as sparse. Detection and tracking is then formulated as a structured convex optimization problem, and solved via an accelerated proximal gradient (APG) algorithm. The performance of proposed algorithm is demonstrated using experimental results.

[1]  G. Jourdain,et al.  "Principal component inverse" algorithm for detection in the presence of reverberation , 2002 .

[2]  Roland Badeau,et al.  Sliding window adaptive SVD algorithms , 2004, IEEE Transactions on Signal Processing.

[3]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[4]  D. Tufts,et al.  Adaptive detection using low rank approximation to a data matrix , 1994 .

[5]  Pablo A. Parrilo,et al.  Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..

[6]  Thushara D. Abhayapala,et al.  Range and bearing estimation of wideband sources using an orthogonal beamspace processing structure , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[7]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[8]  P. Strobach Low-rank adaptive filters , 1996, IEEE Trans. Signal Process..

[9]  Arvind Ganesh,et al.  Fast Convex Optimization Algorithms for Exact Recovery of a Corrupted Low-Rank Matrix , 2009 .

[10]  G. Sapiro,et al.  A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.

[11]  Dacheng Tao,et al.  GoDec: Randomized Lowrank & Sparse Matrix Decomposition in Noisy Case , 2011, ICML.

[12]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[13]  Thomas Kailath,et al.  Fast subspace decomposition , 1994, IEEE Trans. Signal Process..

[14]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[15]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[16]  D. A. Abraham,et al.  Beamforming With Dominant Mode Rejection , 1990, Conference Proceedings on Engineering in the Ocean Environment.

[17]  L. Ghaoui,et al.  Sparse PCA: Convex Relaxations, Algorithms and Applications , 2010, 1011.3781.

[18]  C.-I.C. Nilsen,et al.  Beamspace adaptive beamforming for ultrasound imaging , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[19]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[20]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[21]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[22]  D.W. Tufts,et al.  Efficient and Accurate Rectangular Window Subspace Tracking , 2006, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006..

[23]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[24]  Martin J. Wainwright,et al.  Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions , 2011, ICML.

[25]  Sham M. Kakade,et al.  Robust Matrix Decomposition With Sparse Corruptions , 2011, IEEE Transactions on Information Theory.

[26]  Feng Xu,et al.  Online subspace and sparse filtering for target tracking in reverberant environment , 2012, 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM).

[27]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[28]  G. Golub,et al.  Tracking a few extreme singular values and vectors in signal processing , 1990, Proc. IEEE.

[29]  John Wright,et al.  Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.

[30]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[31]  S. Yun,et al.  An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .

[32]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[33]  Bin Yang,et al.  Projection approximation subspace tracking , 1995, IEEE Trans. Signal Process..

[34]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.