Generation of high-dimensional photonic entanglement

Photonics is a sophisticated platform for the development of novel quantum technologies, from quantum processors to distributed quantum communication. Most linear optical architectures focus on encoding qubits into photons using, for example, polarization or a dual-rail approach. However, encoding higher-dimensional systems - qudits - can in principle provide improved information capacity and noise tolerance in communication, and lower error thresholds in fault-tolerant quantum computation. Here we present new schemes for generating high-dimensional photonic entanglement and discuss how to build cluster states for universal high-dimensional quantum computation.

[1]  Gregor Weihs,et al.  Totally Destructive Many-Particle Interference. , 2018, Physical review letters.

[2]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[3]  E. S. Gómez,et al.  Multidimensional Entanglement Generation with Multicore Optical Fibers , 2020, Physical Review Applied.

[4]  Peter van Loock,et al.  3/4-Efficient Bell measurement with passive linear optics and unentangled ancillae. , 2014, Physical review letters.

[5]  Jonathan P. Dowling,et al.  Quantum teleportation of photonic qudits using linear optics , 2019, Physical Review A.

[6]  Laura Mančinska,et al.  Multidimensional quantum entanglement with large-scale integrated optics , 2018, Science.

[7]  C. P. Sun,et al.  Quantum computation based on d-level cluster state (11 pages) , 2003, quant-ph/0304054.

[8]  W. Grice Arbitrarily complete Bell-state measurement using only linear optical elements , 2011 .

[9]  Jian-Wei Pan,et al.  Quantum Teleportation in High Dimensions. , 2019, Physical review letters.

[10]  K. Kieling,et al.  Creation of Entangled Photonic States Using Linear Optics , 2021, 2106.13825.

[11]  Alán Aspuru-Guzik,et al.  Conceptual Understanding through Efficient Automated Design of Quantum Optical Experiments , 2020, Physical Review X.

[12]  Raman Kashyap,et al.  High-dimensional one-way quantum processing implemented on d-level cluster states , 2018, Nature Physics.

[13]  Mercedes Gimeno-Segovia,et al.  From Three-Photon Greenberger-Horne-Zeilinger States to Ballistic Universal Quantum Computation. , 2014, Physical review letters.

[14]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[15]  T. Rudolph,et al.  How good must single photon sources and detectors be for efficient linear optical quantum computation? , 2007, Physical review letters.

[16]  Markus Tiersch,et al.  Zero-transmission law for multiport beam splitters. , 2010, Physical review letters.

[17]  Mario Krenn,et al.  Experimental Greenberger–Horne–Zeilinger entanglement beyond qubits , 2018, Nature Photonics.

[18]  Fabio Sciarrino,et al.  Experimental generalized quantum suppression law in Sylvester interferometers , 2017, 1705.08650.

[19]  Mario Krenn,et al.  Quantum experiments and graphs II: Quantum interference, computation, and state generation , 2018, Proceedings of the National Academy of Sciences.

[20]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[21]  Terry Rudolph,et al.  One-way quantum computation with four-dimensional photonic qudits , 2007, 0707.4664.

[22]  John G. Rarity,et al.  Error-protected qubits in a silicon photonic chip , 2020, Nature Physics.