Biosystems Engineering Applied to Greenhouse Pest Control
暂无分享,去创建一个
[1] J. Shapiro,et al. ENHANCED OVIPOSITION IN THE INSIDIOUS FLOWER BUG, ORIUS INSIDIOSUS (HEMIPTERA: ANTHOCORIDAE) WITH A PARTIALLY PURIFIED NUTRITIONAL FACTOR FROM PREY EGGS , 2005 .
[2] F. Bigler,et al. The use and exchange of biological control agents for food and agriculture , 2010 .
[3] J. Rosenheim,et al. Intraguild interactions in aphid parasitoids , 2000 .
[4] V. De Puysseleyr,et al. Fitness and predation potential of Macrolophus pygmaeus reared under artificial conditions , 2011 .
[5] A. Cohen. Formalizing Insect Rearing and Artificial Diet Technology , 2001 .
[6] C. Castañé,et al. Selection of refuges for Nesidiocoris tenuis (Het.: Miridae) and Orius laevigatus (Het.: Anthocoridae): virus reservoir risk assessment. , 2009 .
[7] A. D. de Roos,et al. Patterns of exclusion in an intraguild predator-prey system depend on initial conditions. , 2008, The Journal of animal ecology.
[8] C. Castañé,et al. The brine shrimp Artemia sp. as alternative prey for rearing the predatory bug Macrolophus caliginosus , 2006 .
[9] P. Ramakers,et al. Use of castor bean, Ricinus communis, for the introduction of the thrips predator Amblyseius degenerans on glasshouse-grown sweet peppers , 1995 .
[10] J. A. Sánchez,et al. Impact of the Zoophytophagous Plant Bug Nesidiocoris tenuis (Heteroptera: Miridae) on Tomato Yield , 2008, Journal of economic entomology.
[11] F. L. Cônsoli,et al. Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma , 2010 .
[12] K. Dewettinck,et al. Nutritional value of brine shrimp cysts as a factitious food for Orius laevigatus (Heteroptera: Anthocoridae) , 2005 .
[13] A. Janssen,et al. Biological control of thrips and whiteflies by a shared predator: Two pests are better than one , 2008 .
[14] P. Clercq,et al. A fecundity test for assessing the quality of Macrolophus caliginosus reared on artificial diets , 2004 .
[15] V. Bueno. Implementation of biological control in greenhouses in Latin America: how far are we? , 2005 .
[16] Zhibing Hu,et al. Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. , 2007, Angewandte Chemie.
[17] G. Messelink,et al. Evaluation of phytoseiid predators for control of western flower thrips on greenhouse cucumber , 2006, BioControl.
[18] D. Griffiths. Biological Control of Mites , 1999 .
[19] Enric Vila,et al. Utilización de entomófagos en cultivos en invernaderos , 2012 .
[20] A. Urbaneja,et al. Influence of host plant and prey availability on developmental time and surviorship of Nesidiocoris tenius (Het.: Miridae) , 2005 .
[21] M. Sabelis,et al. Review Behaviour and indirect interactions in food webs of plant-inhabiting arthropods , 1998, Experimental & Applied Acarology.
[22] P. Barbosa. Conservation biological control. , 1998 .
[23] J. V. Lenteren,et al. Biological control for insect pests in greenhouses: an unexpected success. , 2007 .
[24] G. Messelink,et al. Typhlodromips swirskii (Athias-Henriot) (Acari: Phytoseiidae): a new predator for thrips control in greenhouse cucumber , 2005 .
[25] R. Stinner. Efficacy of Inundative Releases , 1977 .
[26] T. Cabello,et al. Biological Control Strategies for the South American Tomato Moth (Lepidoptera: Gelechiidae) in Greenhouse Tomatoes , 2012, Journal of economic entomology.
[27] M. Sabelis,et al. Phytoseiid predators as potential biological control agents for Bemisia tabaci , 2004, Experimental & Applied Acarology.
[28] J. V. Lenteren,et al. The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake , 2012, BioControl.
[29] J. Lundgren. Relationships of Natural Enemies and Non-prey Foods , 2009 .
[30] Rajinder Peshin,et al. Integrated Pest Management: A Global Overview of History, Programs and Adoption , 2009 .
[31] J. Shapiro,et al. IMPROVED FECUNDITY IN THE PREDATOR ORIUS INSIDIOSUS (HEMIPTERA: ANTHOCORIDAE) WITH A PARTIALLY PURIFIED NUTRITIONAL FACTOR FROM AN INSECT CELL LINE , 2007 .
[32] A. Cohen. Insect Diets: Science and Technology , 2003 .
[33] J. Michaud,et al. Dietary complementation across life stages in the polyphagous lady beetle Coleomegilla maculata , 2007 .
[34] F. L. Cônsoli,et al. In Vitro Rearing of Egg Parasitoids , 2009 .
[35] Thierry Hance,et al. Aphid parasitoids in biological control , 2012, Canadian Journal of Plant Science.
[36] E. Yano. Effects of intraguild predation and interspecific competititon among biological control agents in augmentative biological control in greenhouses. , 2005 .
[37] S. K. Jalali,et al. Biological Control of Insect Pests Using Egg Parasitoids , 2013, Springer India.
[38] M. Sabelis,et al. Phytoseiid Predators Suppress Populations of Bemisia Tabaci on Cucumber Plants with Alternative Food , 2004, Experimental & Applied Acarology.
[39] A. Hughes. The Mites of Stored Food and Houses , 1976 .
[40] Barbara I. P. Barratt,et al. Do new Access and Benefit Sharing procedures under the Convention on Biological Diversity threaten the future of biological control? , 2010, BioControl.
[41] S. Gan-Mor,et al. Novel application of pollen to augment the predator Amblyseius swirskii on greenhouse sweet pepper. , 2009 .
[42] BoivinGuy,et al. Aphid parasitoids in biological control , 2012 .
[43] T. Kuhar,et al. Potential of Trichogramma ostriniae (Hymenoptera: Trichogrammatidae) for Biological Control of European Corn Borer (Lepidoptera: Crambidae) in Solanaceous Crops , 2004, Journal of economic entomology.
[44] P. Clercq,et al. Influence of diet on the predation rate of Orius laevigatus on Frankliniella occidentalis , 2010, BioControl.
[45] J. Hormaza,et al. Alternative food improves the combined effect of an omnivore and a predator on biological pest control. A case study in avocado orchards , 2008, Bulletin of Entomological Research.
[46] Rajinder Peshin,et al. Integrated Pest Management: Innovation-Development Process , 2009 .
[47] M. Larramendy,et al. Integrated Pest Management And Pest Control: Current And Future Tactics , 2014 .
[48] H. Nagaraja. Mass Production of Trichogrammatid Parasitoids , 2013 .
[49] Технология. Springer Science+Business Media , 2013 .
[50] G. Scriven,et al. Effects of Artificial Foods on Reproduction and Development of Four Species of Phytoseiid Mites , 1966 .
[51] Kholoud A. Al-Shammer. Plant Pollen as an Alternative Food Source for Rearing Euseius scutalis (Acari: Phytoseiidae) in Hail, Saudi Arabia , 2011 .
[52] T. Cabello,et al. Technical efficiency of plant protection in Spanish greenhouses , 1994 .
[53] R. Ochoa,et al. Mites (acari) for pest control , 2003 .
[54] R. O'Neill,et al. The value of the world's ecosystem services and natural capital , 1997, Nature.
[55] G. Boivin,et al. Trophic and guild interactions in biological control , 2006 .
[56] L. Tirry,et al. Influence of diet on life table parameters of Iphiseius degenerans (Acari: Phytoseiidae) , 2004, Experimental & Applied Acarology.
[57] C. Castañé,et al. Comparison of prey consumption by Dicyphus tamaninii reared conventionally, and on a meat-based diet , 2002, BioControl.
[58] M. Goettel,et al. Biological Control: A Global Perspective , 2007 .
[59] J. Waage,et al. Trichogramma and other egg parasites. , 1988 .
[60] M. Sabelis,et al. Generalist predators, food web complexities and biological pest control in greenhouse crops , 2012 .
[61] M. Sabelis,et al. Biological control of broad mites (Polyphagotarsonemus latus) with the generalist predator Amblyseius swirskii , 2010, Experimental and Applied Acarology.
[62] L. Nunney,et al. Biological Control through Augmentative Releases of Natural Enemies: A Strategy Whose Time Has Come , 1992 .
[63] A. Voilley,et al. Applications of spray-drying in microencapsulation of food ingredients: An overview , 2007 .
[64] G. Snodgrass,et al. Effect of Modification of the NI Artificial Diet on the Biological Fitness Parameters of Mass Reared Western Tarnished Plant Bug, Lygus hesperus , 2011, Journal of insect science.
[65] M. Sabelis,et al. INTRAGUILD PREDATION USUALLY DOES NOT DISRUPT BIOLOGICAL CONTROL , 2006 .
[66] S. Frank. Biological control of arthropod pests using banker plant systems: Past progress and future directions , 2010 .
[67] H. Chang,et al. Responses of Amblyseius ovalis (Evans) (Acarina: Phytoseiidae) to natural food resouces and two artificial diets , 1993, Experimental & Applied Acarology.
[68] A. Wheeler. Predacious Plant Bugs (Miridae) , 2000 .
[69] J. V. Lenteren,et al. Quality control and production of biological control agents : theory and testing procedures , 2003 .
[70] R. McGregor,et al. The effects of mullein plants (Verbascum thapsus) on the population dynamics of Dicyphus hesperus (Heteroptera: Miridae) in tomato greenhouses , 2003 .
[71] S. N. Thompson,et al. Nutrition and culture of entomophagous insects. , 1999, Annual review of entomology.
[72] S. N. Thompson,et al. CHAPTER 22 – Nutrition of Entomophagous Insects and Other Arthropods , 1999 .
[73] I. Kasap. Life-history traits of the predaceous mite Kampimodromus aberrans (Oudemans) (Acarina: Phytoseiidae) on four different types of food , 2005 .
[74] T. V. Nguyen,et al. Development of Neoseiulus womersleyi (Schicha) and Euseius ovalis (Evans) feeding on four tetranychid mites (Acari: Phytoseiidae, Tetranychidae) and pollen , 2010 .
[75] C. Castañé,et al. Rearing the predatory bug Macrolophus caliginosus on a meat-based diet , 2005 .
[76] Y. Kuwahara. Pheromone studies on astigmatid mites-alarm, aggregation and sex. , 1991 .
[77] P. Clercq,et al. Artificial and factitious foods support the development and reproduction of the predatory mite Amblyseius swirskii , 2013, Experimental and Applied Acarology.
[78] C. Kennett,et al. OVIPOSITION AND DEVELOPMENT IN PREDACEOUS MITES FED WITH ARTIFICIAL AND NATURAL DIETS (ACARI: PHYTOSEIIDAE) , 1980 .
[79] T. Bellows,et al. Handbook of biological control : principles and applications of biological control , 1999 .
[80] J. Bell,et al. Generalist predators disrupt parasitoid aphid control by direct and coincidental intraguild predation , 2011, Bulletin of Entomological Research.
[81] P. Weintraub,et al. Mites (Acari) as a factor in greenhouse management. , 2012, Annual review of entomology.
[82] J. C. van Lenteren,et al. Integrated Pest and Disease Management in Greenhouse Crops , 2020 .
[83] M. Sabelis,et al. Pollen subsidies promote whitefly control through the numerical response of predatory mites , 2010, BioControl.
[84] M. Hoffmann,et al. Inoculative releases of Trichogramma ostriniae for suppression of Ostrinia nubilalis (European corn borer) in sweet corn: field biology and population dynamics , 2002 .
[85] H. V. Emden. Artificial diet for aphids - thirty years' experience. , 2009 .
[86] M. Coll,et al. Plant and Prey Consumption Cause a Similar Reductions in Cannibalism by an Omnivorous Bug , 2007, Journal of Insect Behavior.
[87] M. Osakabe,et al. Development, long-term survival, and the maintenance of fertility in Neoseiulus californicus (Acari: Phytoseiidae) reared on an artificial diet , 2008, Experimental and Applied Acarology.
[88] J. Parra. Mass Rearing of Egg Parasitoids for Biological Control Programs , 2009 .
[89] D. R. Richards,et al. Essential versus alternative foods of insect predators: benefits of a mixed diet , 1999, Oecologia.
[90] L. Osborne,et al. The Banker Plant Method in Biological Control , 2011 .
[91] E. Riddick. Benefits and limitations of factitious prey and artificial diets on life parameters of predatory beetles, bugs, and lacewings: a mini-review , 2009, BioControl.