Biosystems Engineering Applied to Greenhouse Pest Control

The recent development and adoption of IPM programs in the southeast of Spain, where the largest concentration of protected crops of the world has developed, excluding China, has become a reference model for other areas, specially with Mediterranean climatic conditions. At least four key driving forces have been involved, strong regulatory framework, subsidies to the growers, extension of knowledge, and Research and Innovation. The last has motivated a drastic change in the mind-set of growers since they recognize biocontrol as the best pest management after selection and development of suitable species and efficient biocontrol programs, which are mainly based on augmentative releases of commercially mass-reared populations. The quality and price of the beneficials, which has deserved less attention when analyzing the failure or success of biocontrol, has contributed significantly to this achievement. Biosystems engineering progress to mass rear the key species of insects and mites currently used in these augmentative programs are reviewed. Specifically, attention is paid to the predatory mites Phytoseidae and some species of the families Miridae and Anthocoridae, as well as some parasitoids. Changes in the productions and formulation of new release systems, such as sachets a la carte that have increased the affordable quantities of individuals, are discussed. Finally, trends and challenges on complementary and artificial diets, as well as automatisms, which may decrease production costs and open new opportunities for open field crops, are explored.

[1]  J. Shapiro,et al.  ENHANCED OVIPOSITION IN THE INSIDIOUS FLOWER BUG, ORIUS INSIDIOSUS (HEMIPTERA: ANTHOCORIDAE) WITH A PARTIALLY PURIFIED NUTRITIONAL FACTOR FROM PREY EGGS , 2005 .

[2]  F. Bigler,et al.  The use and exchange of biological control agents for food and agriculture , 2010 .

[3]  J. Rosenheim,et al.  Intraguild interactions in aphid parasitoids , 2000 .

[4]  V. De Puysseleyr,et al.  Fitness and predation potential of Macrolophus pygmaeus reared under artificial conditions , 2011 .

[5]  A. Cohen Formalizing Insect Rearing and Artificial Diet Technology , 2001 .

[6]  C. Castañé,et al.  Selection of refuges for Nesidiocoris tenuis (Het.: Miridae) and Orius laevigatus (Het.: Anthocoridae): virus reservoir risk assessment. , 2009 .

[7]  A. D. de Roos,et al.  Patterns of exclusion in an intraguild predator-prey system depend on initial conditions. , 2008, The Journal of animal ecology.

[8]  C. Castañé,et al.  The brine shrimp Artemia sp. as alternative prey for rearing the predatory bug Macrolophus caliginosus , 2006 .

[9]  P. Ramakers,et al.  Use of castor bean, Ricinus communis, for the introduction of the thrips predator Amblyseius degenerans on glasshouse-grown sweet peppers , 1995 .

[10]  J. A. Sánchez,et al.  Impact of the Zoophytophagous Plant Bug Nesidiocoris tenuis (Heteroptera: Miridae) on Tomato Yield , 2008, Journal of economic entomology.

[11]  F. L. Cônsoli,et al.  Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma , 2010 .

[12]  K. Dewettinck,et al.  Nutritional value of brine shrimp cysts as a factitious food for Orius laevigatus (Heteroptera: Anthocoridae) , 2005 .

[13]  A. Janssen,et al.  Biological control of thrips and whiteflies by a shared predator: Two pests are better than one , 2008 .

[14]  P. Clercq,et al.  A fecundity test for assessing the quality of Macrolophus caliginosus reared on artificial diets , 2004 .

[15]  V. Bueno Implementation of biological control in greenhouses in Latin America: how far are we? , 2005 .

[16]  Zhibing Hu,et al.  Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. , 2007, Angewandte Chemie.

[17]  G. Messelink,et al.  Evaluation of phytoseiid predators for control of western flower thrips on greenhouse cucumber , 2006, BioControl.

[18]  D. Griffiths Biological Control of Mites , 1999 .

[19]  Enric Vila,et al.  Utilización de entomófagos en cultivos en invernaderos , 2012 .

[20]  A. Urbaneja,et al.  Influence of host plant and prey availability on developmental time and surviorship of Nesidiocoris tenius (Het.: Miridae) , 2005 .

[21]  M. Sabelis,et al.  Review Behaviour and indirect interactions in food webs of plant-inhabiting arthropods , 1998, Experimental & Applied Acarology.

[22]  P. Barbosa Conservation biological control. , 1998 .

[23]  J. V. Lenteren,et al.  Biological control for insect pests in greenhouses: an unexpected success. , 2007 .

[24]  G. Messelink,et al.  Typhlodromips swirskii (Athias-Henriot) (Acari: Phytoseiidae): a new predator for thrips control in greenhouse cucumber , 2005 .

[25]  R. Stinner Efficacy of Inundative Releases , 1977 .

[26]  T. Cabello,et al.  Biological Control Strategies for the South American Tomato Moth (Lepidoptera: Gelechiidae) in Greenhouse Tomatoes , 2012, Journal of economic entomology.

[27]  M. Sabelis,et al.  Phytoseiid predators as potential biological control agents for Bemisia tabaci , 2004, Experimental & Applied Acarology.

[28]  J. V. Lenteren,et al.  The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake , 2012, BioControl.

[29]  J. Lundgren Relationships of Natural Enemies and Non-prey Foods , 2009 .

[30]  Rajinder Peshin,et al.  Integrated Pest Management: A Global Overview of History, Programs and Adoption , 2009 .

[31]  J. Shapiro,et al.  IMPROVED FECUNDITY IN THE PREDATOR ORIUS INSIDIOSUS (HEMIPTERA: ANTHOCORIDAE) WITH A PARTIALLY PURIFIED NUTRITIONAL FACTOR FROM AN INSECT CELL LINE , 2007 .

[32]  A. Cohen Insect Diets: Science and Technology , 2003 .

[33]  J. Michaud,et al.  Dietary complementation across life stages in the polyphagous lady beetle Coleomegilla maculata , 2007 .

[34]  F. L. Cônsoli,et al.  In Vitro Rearing of Egg Parasitoids , 2009 .

[35]  Thierry Hance,et al.  Aphid parasitoids in biological control , 2012, Canadian Journal of Plant Science.

[36]  E. Yano Effects of intraguild predation and interspecific competititon among biological control agents in augmentative biological control in greenhouses. , 2005 .

[37]  S. K. Jalali,et al.  Biological Control of Insect Pests Using Egg Parasitoids , 2013, Springer India.

[38]  M. Sabelis,et al.  Phytoseiid Predators Suppress Populations of Bemisia Tabaci on Cucumber Plants with Alternative Food , 2004, Experimental & Applied Acarology.

[39]  A. Hughes The Mites of Stored Food and Houses , 1976 .

[40]  Barbara I. P. Barratt,et al.  Do new Access and Benefit Sharing procedures under the Convention on Biological Diversity threaten the future of biological control? , 2010, BioControl.

[41]  S. Gan-Mor,et al.  Novel application of pollen to augment the predator Amblyseius swirskii on greenhouse sweet pepper. , 2009 .

[42]  BoivinGuy,et al.  Aphid parasitoids in biological control , 2012 .

[43]  T. Kuhar,et al.  Potential of Trichogramma ostriniae (Hymenoptera: Trichogrammatidae) for Biological Control of European Corn Borer (Lepidoptera: Crambidae) in Solanaceous Crops , 2004, Journal of economic entomology.

[44]  P. Clercq,et al.  Influence of diet on the predation rate of Orius laevigatus on Frankliniella occidentalis , 2010, BioControl.

[45]  J. Hormaza,et al.  Alternative food improves the combined effect of an omnivore and a predator on biological pest control. A case study in avocado orchards , 2008, Bulletin of Entomological Research.

[46]  Rajinder Peshin,et al.  Integrated Pest Management: Innovation-Development Process , 2009 .

[47]  M. Larramendy,et al.  Integrated Pest Management And Pest Control: Current And Future Tactics , 2014 .

[48]  H. Nagaraja Mass Production of Trichogrammatid Parasitoids , 2013 .

[49]  Технология Springer Science+Business Media , 2013 .

[50]  G. Scriven,et al.  Effects of Artificial Foods on Reproduction and Development of Four Species of Phytoseiid Mites , 1966 .

[51]  Kholoud A. Al-Shammer Plant Pollen as an Alternative Food Source for Rearing Euseius scutalis (Acari: Phytoseiidae) in Hail, Saudi Arabia , 2011 .

[52]  T. Cabello,et al.  Technical efficiency of plant protection in Spanish greenhouses , 1994 .

[53]  R. Ochoa,et al.  Mites (acari) for pest control , 2003 .

[54]  R. O'Neill,et al.  The value of the world's ecosystem services and natural capital , 1997, Nature.

[55]  G. Boivin,et al.  Trophic and guild interactions in biological control , 2006 .

[56]  L. Tirry,et al.  Influence of diet on life table parameters of Iphiseius degenerans (Acari: Phytoseiidae) , 2004, Experimental & Applied Acarology.

[57]  C. Castañé,et al.  Comparison of prey consumption by Dicyphus tamaninii reared conventionally, and on a meat-based diet , 2002, BioControl.

[58]  M. Goettel,et al.  Biological Control: A Global Perspective , 2007 .

[59]  J. Waage,et al.  Trichogramma and other egg parasites. , 1988 .

[60]  M. Sabelis,et al.  Generalist predators, food web complexities and biological pest control in greenhouse crops , 2012 .

[61]  M. Sabelis,et al.  Biological control of broad mites (Polyphagotarsonemus latus) with the generalist predator Amblyseius swirskii , 2010, Experimental and Applied Acarology.

[62]  L. Nunney,et al.  Biological Control through Augmentative Releases of Natural Enemies: A Strategy Whose Time Has Come , 1992 .

[63]  A. Voilley,et al.  Applications of spray-drying in microencapsulation of food ingredients: An overview , 2007 .

[64]  G. Snodgrass,et al.  Effect of Modification of the NI Artificial Diet on the Biological Fitness Parameters of Mass Reared Western Tarnished Plant Bug, Lygus hesperus , 2011, Journal of insect science.

[65]  M. Sabelis,et al.  INTRAGUILD PREDATION USUALLY DOES NOT DISRUPT BIOLOGICAL CONTROL , 2006 .

[66]  S. Frank Biological control of arthropod pests using banker plant systems: Past progress and future directions , 2010 .

[67]  H. Chang,et al.  Responses of Amblyseius ovalis (Evans) (Acarina: Phytoseiidae) to natural food resouces and two artificial diets , 1993, Experimental & Applied Acarology.

[68]  A. Wheeler Predacious Plant Bugs (Miridae) , 2000 .

[69]  J. V. Lenteren,et al.  Quality control and production of biological control agents : theory and testing procedures , 2003 .

[70]  R. McGregor,et al.  The effects of mullein plants (Verbascum thapsus) on the population dynamics of Dicyphus hesperus (Heteroptera: Miridae) in tomato greenhouses , 2003 .

[71]  S. N. Thompson,et al.  Nutrition and culture of entomophagous insects. , 1999, Annual review of entomology.

[72]  S. N. Thompson,et al.  CHAPTER 22 – Nutrition of Entomophagous Insects and Other Arthropods , 1999 .

[73]  I. Kasap Life-history traits of the predaceous mite Kampimodromus aberrans (Oudemans) (Acarina: Phytoseiidae) on four different types of food , 2005 .

[74]  T. V. Nguyen,et al.  Development of Neoseiulus womersleyi (Schicha) and Euseius ovalis (Evans) feeding on four tetranychid mites (Acari: Phytoseiidae, Tetranychidae) and pollen , 2010 .

[75]  C. Castañé,et al.  Rearing the predatory bug Macrolophus caliginosus on a meat-based diet , 2005 .

[76]  Y. Kuwahara Pheromone studies on astigmatid mites-alarm, aggregation and sex. , 1991 .

[77]  P. Clercq,et al.  Artificial and factitious foods support the development and reproduction of the predatory mite Amblyseius swirskii , 2013, Experimental and Applied Acarology.

[78]  C. Kennett,et al.  OVIPOSITION AND DEVELOPMENT IN PREDACEOUS MITES FED WITH ARTIFICIAL AND NATURAL DIETS (ACARI: PHYTOSEIIDAE) , 1980 .

[79]  T. Bellows,et al.  Handbook of biological control : principles and applications of biological control , 1999 .

[80]  J. Bell,et al.  Generalist predators disrupt parasitoid aphid control by direct and coincidental intraguild predation , 2011, Bulletin of Entomological Research.

[81]  P. Weintraub,et al.  Mites (Acari) as a factor in greenhouse management. , 2012, Annual review of entomology.

[82]  J. C. van Lenteren,et al.  Integrated Pest and Disease Management in Greenhouse Crops , 2020 .

[83]  M. Sabelis,et al.  Pollen subsidies promote whitefly control through the numerical response of predatory mites , 2010, BioControl.

[84]  M. Hoffmann,et al.  Inoculative releases of Trichogramma ostriniae for suppression of Ostrinia nubilalis (European corn borer) in sweet corn: field biology and population dynamics , 2002 .

[85]  H. V. Emden Artificial diet for aphids - thirty years' experience. , 2009 .

[86]  M. Coll,et al.  Plant and Prey Consumption Cause a Similar Reductions in Cannibalism by an Omnivorous Bug , 2007, Journal of Insect Behavior.

[87]  M. Osakabe,et al.  Development, long-term survival, and the maintenance of fertility in Neoseiulus californicus (Acari: Phytoseiidae) reared on an artificial diet , 2008, Experimental and Applied Acarology.

[88]  J. Parra Mass Rearing of Egg Parasitoids for Biological Control Programs , 2009 .

[89]  D. R. Richards,et al.  Essential versus alternative foods of insect predators: benefits of a mixed diet , 1999, Oecologia.

[90]  L. Osborne,et al.  The Banker Plant Method in Biological Control , 2011 .

[91]  E. Riddick Benefits and limitations of factitious prey and artificial diets on life parameters of predatory beetles, bugs, and lacewings: a mini-review , 2009, BioControl.