From the simplex to the sphere: Faster constrained optimization using the Hadamard parametrization
暂无分享,去创建一个
[1] Immanuel M. Bomze,et al. Regularity versus Degeneracy in Dynamics, Games, and Optimization: A Unified Approach to Different Aspects , 2002, SIAM Rev..
[2] A. Tsybakov,et al. SPADES AND MIXTURE MODELS , 2009, 0901.2044.
[3] Varun Kanade,et al. Implicit Regularization for Optimal Sparse Recovery , 2019, NeurIPS.
[4] Nicolas Boumal,et al. Efficiently escaping saddle points on manifolds , 2019, NeurIPS.
[5] Kenneth L. Clarkson,et al. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm , 2008, SODA '08.
[6] Etienne de Klerk,et al. The complexity of optimizing over a simplex, hypercube or sphere: a short survey , 2008, Central Eur. J. Oper. Res..
[7] Steffen Limmer,et al. A Neural Architecture for Bayesian Compressive Sensing Over the Simplex via Laplace Techniques , 2018, IEEE Transactions on Signal Processing.
[8] P. Zhao,et al. Implicit regularization via hadamard product over-parametrization in high-dimensional linear regression , 2019 .
[9] Yunmei Chen,et al. Projection Onto A Simplex , 2011, 1101.6081.
[10] BoydStephen,et al. An Interior-Point Method for Large-Scale l1-Regularized Logistic Regression , 2007 .
[11] Arkadi Nemirovski,et al. The Ordered Subsets Mirror Descent Optimization Method with Applications to Tomography , 2001, SIAM J. Optim..
[12] Yurii Nesterov,et al. Cubic regularization of Newton method and its global performance , 2006, Math. Program..
[13] Marc Teboulle,et al. Mirror descent and nonlinear projected subgradient methods for convex optimization , 2003, Oper. Res. Lett..
[14] Yaguang Yang. Globally Convergent Optimization Algorithms on Riemannian Manifolds: Uniform Framework for Unconstrained and Constrained Optimization , 2007 .
[15] John Wright,et al. Complete dictionary recovery over the sphere , 2015, 2015 International Conference on Sampling Theory and Applications (SampTA).
[16] Philip Wolfe,et al. An algorithm for quadratic programming , 1956 .
[17] Yoram Singer,et al. Efficient projections onto the l1-ball for learning in high dimensions , 2008, ICML '08.
[18] Martin Jaggi,et al. Step-Size Adaptivity in Projection-Free Optimization , 2018 .
[19] Lorenzo Rosasco,et al. On regularization algorithms in learning theory , 2007, J. Complex..
[20] Furong Huang,et al. Escaping From Saddle Points - Online Stochastic Gradient for Tensor Decomposition , 2015, COLT.
[21] Michel Barlaud,et al. A filtered bucket-clustering method for projection onto the simplex and the ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{doc , 2019, Mathematical Programming.
[22] Martin Jaggi,et al. On the Global Linear Convergence of Frank-Wolfe Optimization Variants , 2015, NIPS.
[23] Manuel Blum,et al. Time Bounds for Selection , 1973, J. Comput. Syst. Sci..
[24] E. C. Zeeman,et al. Population dynamics from game theory , 1980 .
[25] K. Schittkowski,et al. NONLINEAR PROGRAMMING , 2022 .
[26] Martin Jaggi,et al. Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization , 2013, ICML.
[27] Michael Biehl,et al. Workshop New Challenges in Neural Computation , 2011 .
[28] Shuzhong Zhang,et al. A Cubic Regularized Newton's Method over Riemannian Manifolds , 2018, 1805.05565.
[29] Levent Tunçel,et al. Optimization algorithms on matrix manifolds , 2009, Math. Comput..
[30] Nirmal Keshava,et al. A Survey of Spectral Unmixing Algorithms , 2003 .
[31] D. Luenberger. The Gradient Projection Method Along Geodesics , 1972 .
[32] J. Zico Kolter,et al. A Continuous-Time View of Early Stopping for Least Squares Regression , 2018, AISTATS.
[33] Yoram Singer,et al. Efficient Learning of Label Ranking by Soft Projections onto Polyhedra , 2006, J. Mach. Learn. Res..
[34] William W. Hager,et al. A Nonmonotone Line Search Technique and Its Application to Unconstrained Optimization , 2004, SIAM J. Optim..
[35] Wotao Yin,et al. A feasible method for optimization with orthogonality constraints , 2013, Math. Program..
[36] Laurent Condat. Fast projection onto the simplex and the l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pmb {l}_\mathbf {1}$$\end{ , 2015, Mathematical Programming.