Towards Physical Descriptors of Active and Selective Catalysts for the Oxidation of n‐Butane to Maleic Anhydride

Based on our newly developed microwave cavity perturbation technique, the microwave conductivity of diverse vanadium(III), (IV), and (V) phosphate catalysts was measured under reaction conditions for the selective oxidation of n‐butane. The conductivity response on the gas phase was identified as a very sensitive measure for the redox kinetics, reversibility, and stability of the samples, which are important prerequisites for highly selective and active catalysts. The sensitivity achieved by our method was comparable to surface‐sensitive methods such as X‐ray photoelectron spectroscopy, whereas more conventional analytic techniques such as X‐ray diffractometry or Raman spectroscopy only indicated the stability of the bulk crystal phase under the same reaction conditions.

[1]  B. Weckhuysen,et al.  Real-time control of a catalytic solid in a fixed-bed reactor based on in situ spectroscopy. , 2007, Angewandte Chemie.

[2]  Stuart H. Taylor,et al.  Chemically Induced Fast Solid-State Transitions of ω-VOPO4 in Vanadium Phosphate Catalysts , 2006, Science.

[3]  G. Hutchings Vanadium phosphate: a new look at the active components of catalysts for the oxidation of butane to maleic anhydride , 2004 .

[4]  E. Munson,et al.  Investigation of the mechanism of n-butane oxidation on vanadium phosphorus oxide catalysts: evidence from isotopic labeling studies. , 2002, Journal of the American Chemical Society.

[5]  Fundamental study of the oxidation of butane over vanadyl pyrophosphate , 1985 .

[6]  Ralf Moos,et al.  Direct Catalyst Monitoring by Electrical Means: An Overview on Promising Novel Principles , 2009 .

[7]  Henny J. M. Bouwmeester,et al.  Solid state aspects of oxidation catalysis , 2000 .

[8]  Z. Xue,et al.  In Situ Laser Raman Spectroscopy Studies of VPO Catalyst Transformations , 1999 .

[9]  G. Hutchings,et al.  Role of the product in the transformation of a catalyst to its active state , 1994, Nature.

[10]  Robert Schlögl,et al.  The intimate relationship between bulk electronic conductivity and selectivity in the catalytic oxidation of n-butane. , 2012, Angewandte Chemie.

[11]  R. Schlögl,et al.  Über den Zusammenhang zwischen elektronischer Volumenleitfähigkeit und Selektivität in der katalytischen Oxidation von n-Butan , 2012 .

[12]  M. Schmidt,et al.  Chemical Vapor Transport Reactions , 2012 .

[13]  J. Herrmann,et al.  Correlation with the redox V5+/V4+ ratio in vanadium phosphorus oxide catalysts for mild oxidation of n-butane to maleic anhydride , 2001 .

[14]  P. Mars,et al.  Oxidations carried out by means of vanadium oxide catalysts , 1954 .

[15]  D. F. Ogletree,et al.  In Situ Investigation of the Nature of the Active Surface of a Vanadyl Pyrophosphate Catalyst during n-Butane Oxidation to Maleic Anhydride , 2003 .

[16]  W. Bauhofer Determination of semiconductor energy gaps using the microwave cavity perturbation method , 1981 .

[17]  F. Cavani,et al.  Sustainability in catalytic oxidation: an alternative approach or a structural evolution? , 2009, ChemSusChem.

[18]  M. Willinger,et al.  Electronic structure of -VOPO4 , 2005 .

[19]  H. Kung,et al.  The Kinetic Significance of V5+ in n-Butane Oxidation Catalyzed by Vanadium Phosphates , 1997, Science.

[20]  K. Lii,et al.  Hydrothermal synthesis, crystal structure and ionic conductivity of Ag2VO2PO4: a new layered phosphate of vanadium(V) , 1993 .

[21]  J. Sinkkonen AC Properties of a Random Barrier Network , 1981, January 1.

[22]  N. Guilhaume,et al.  A study by in situ laser Raman spectroscopy of VPO catalysts for n-butane oxidation to maleic anhydride I. Preparation and characterization of pure reference phases , 1992 .

[23]  R. Schlögl,et al.  Resource-Efficient Alkane Selective Oxidation on New Crystalline Solids: Searching for Novel Catalyst Materials , 2012 .

[24]  G. Hutchings,et al.  Gallium-doped VPO catalysts for the oxidation of n-butane to maleic anhydride , 2006 .

[25]  G. Patience,et al.  Transient n-butane partial oxidation kinetics over VPO , 2004 .

[26]  F. Cavani Catalytic selective oxidation: The forefront in the challenge for a more sustainable chemical industry , 2010 .

[27]  H. Kung,et al.  Identification of vanadium species involved in sequential redox operation of VPO catalysts , 2000 .

[28]  R. Grasselli,et al.  Fundamental Principles of Selective Heterogeneous Oxidation Catalysis , 2002 .

[29]  H. Tietze The crystal and molecular structure of oxovanadium(V) orthophosphate dihydrate, VOPO4,2H2O , 1981 .

[30]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[31]  R. Schlögl,et al.  Influence of the geometric structure on the V L3 near edge X-ray absorption fine structure from vanadium phosphorus oxide catalysts , 2002 .

[32]  F. Rosowski,et al.  Catalytic Properties of Silver Vanadium Phosphates in n-Butane Oxidation – Considerations on the Impact of the [VxOy] Substructure , 2011 .

[33]  C. Torardi,et al.  New metal-intercalated layered vanadyl phosphates, MxVOPO4‚yH2O (M ) Ag, Cu, Zn) , 1998 .

[34]  Gabriele Centi,et al.  Mechanistic aspects of maleic anhydride synthesis from C4 hydrocarbons over phosphorus vanadium oxide , 1988 .

[35]  G. Centi Vanadyl Pyrophosphate - A Critical Overview , 1993 .

[36]  R. Schlögl,et al.  In situ analysis of metal-oxide systems used for selective oxidation catalysis: how essential is chemical complexity? , 2001 .

[37]  M. Baerns,et al.  The reaction mechanism of the selective oxidation of butane on (VO)2P2O7 catalysts: The role of oxygen in the reaction chain to maleic anhydride , 1997 .

[38]  R. Gruehn,et al.  Beiträge zum thermischen Verhalten wasserfreier Phosphate. VI : Einkristallstrukturverfeinerung der Metall(III)-orthophosphate TiPO4 and VPO4 , 1992 .

[39]  D. Su,et al.  In Situ Surface Analysis in Selective Oxidation Catalysis: n-Butane Conversion Over VPP , 2003 .

[40]  P. Delichère,et al.  Nature of active oxygen in the n-butane selective oxidation over well-defined VPO catalysts: an oxygen isotopic labelling study , 1997 .

[41]  J. Herrmann,et al.  ELECTRICAL PROPERTIES OF DOPED VANADIUM PHOSPHATE PHASES AND VPO CATALYSTSUSED IN THE PARTIAL OXIDATION OF N-BUTANE TO MALEIC ANHYDRIDE , 1994 .

[42]  J. Herrmann The electronic factor and related redox processes in oxidation catalysis , 2006 .

[43]  M. Witko,et al.  Oxidation catalysis—electronic theory revisited , 2003 .

[44]  J. Vennik,et al.  On the electrical conductivity of V2O5 single crystals , 1973 .

[45]  J. Herrmann,et al.  In SituStudy of Redox and of p-Type Semiconducting Properties of Vanadyl Pyrophosphate and of V–P–O Catalysts during the Partial Oxidation ofn-Butane to Maleic Anhydride , 1997 .

[46]  J. Herrmann,et al.  Selective oxidation of n-butane to maleic anhydride on vanadyl pyrophosphate: II. Characterization of the oxygen-treated catalyst by electrical conductivity, Raman, XPS, and NMR spectroscopic techniques , 1998 .

[47]  D J Fabian,et al.  The Chemical Physics of Surfaces , 1978 .

[48]  M. C. Ball Chemical transport reactions , 1968 .

[49]  Michael T. Lanagan,et al.  Complex Permittivity of Graphite, Carbon Black and Coal Powders in the Ranges of X-band Frequencies (8.2 to 12.4 GHz) and between 1 and 10 GHz , 2011 .

[50]  R. Schlögl,et al.  X-Ray Photoelectron Spectroscopy for investigation of Heterogeneous Catalytic Processes , 2009 .

[51]  B. Raveau,et al.  A Mixed Valent Vanadium Phosphate Closely Related to BaV2P2O10: AgV2P2O10 , 1993 .

[52]  Robert Schlögl,et al.  The microwave cavity perturbation technique for contact-free and in situ electrical conductivity measurements in catalysis and materials science. , 2012, Physical chemistry chemical physics : PCCP.

[53]  F. Cavani,et al.  VPO catalyst for n-butane oxidation to maleic anhydride: A goal achieved, or a still open challenge? , 2006 .

[54]  W. Jaegermann,et al.  Theoretical and experimental determination of the electronic structure of V(2)O(5), reduced V(2)O(5-x) and sodium intercalated NaV(2)O(5). , 2007, Physical chemistry chemical physics : PCCP.