Strongly interacting electronic systems possess rich phase diagrams resulting from the competition between different quantum ground states. A general mechanism that relieves this frustration is the emergence of microemulsion phases, where regions of different phase self-organize across multiple length scales. The experimental characterization of these phases often poses significant challenges, as the long-range Coulomb interaction microscopically mingles the competing states. Here, we use cryogenic reflectance and magneto-optical spectroscopy to observe the signatures of the mixed state between an electronic Wigner crystal and an electron liquid in a MoSe2 monolayer. We find that the transit into this 'microemulsion' state is marked by anomalies in exciton reflectance, spin susceptibility, and Umklapp scattering, establishing it as a distinct phase of electronic matter. Our study of the two-dimensional electronic microemulsion phase elucidates the physics of novel correlated electron states with strong Coulomb interactions.