O ct 2 00 6 Constructions of Strict Lyapunov Functions for Discrete Time and Hybrid Time-Varying Systems ∗

We provide explicit closed form expressions for strict Lyapunov functions for time-varying discrete time systems. Our Lyapunov functions are expressed in terms of known nonstrict Lyapunov functions for the dynamics and finite sums of persistency of excitation parameters. This provides a discrete time analog of our previous continuous time Lyapunov function constructions. We also construct explicit strict Lyapunov functions for systems satisfying nonstrict discrete time analogs of the conditions from Matrosov’s Theorem. We use our methods to build strict Lyapunov functions for time-varying hybrid systems that contain mixtures of continuous and discrete time evolutions.

[1]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[2]  Eduardo D. Sontag,et al.  FEEDBACK STABILIZATION OF NONLINEAR SYSTEMS , 1990 .

[3]  Claude Samson,et al.  Velocity and torque feedback control of a nonholonomic cart , 1991 .

[4]  Jean-Michel Coron,et al.  Global asymptotic stabilization for controllable systems without drift , 1992, Math. Control. Signals Syst..

[5]  Jean-Baptiste Pomet,et al.  Esaim: Control, Optimisation and Calculus of Variations Control Lyapunov Functions for Homogeneous " Jurdjevic-quinn " Systems , 2022 .

[6]  Eduardo Sontag,et al.  Forward Completeness, Unboundedness Observability, and their Lyapunov Characterizations , 1999 .

[7]  A. R. Teelb,et al.  Formulas relating KL stability estimates of discrete-time and sampled-data nonlinear systems , 1999 .

[8]  David Angeli,et al.  Input-to-state stability of PD-controlled robotic systems , 1999, Autom..

[9]  Eduardo Sontag,et al.  Notions of input to output stability , 1999, Systems & Control Letters.

[10]  Eduardo D. Sontag,et al.  Continuous control-Lyapunov functions for asymptotically controllable time-varying systems , 1999 .

[11]  David Angeli,et al.  A characterization of integral input-to-state stability , 2000, IEEE Trans. Autom. Control..

[12]  Eduardo D. Sontag,et al.  Lyapunov Characterizations of Input to Output Stability , 2000, SIAM J. Control. Optim..

[13]  Eduardo D. Sontag,et al.  Input-Output-to-State Stability , 2001, SIAM J. Control. Optim..

[14]  A. Bacciotti,et al.  Liapunov functions and stability in control theory , 2001 .

[15]  Frédéric Mazenc,et al.  Strict Lyapunov functions for time-varying systems , 2003, Autom..

[16]  Pieter Collins,et al.  A Trajectory-Space Approach to Hybrid Systems , 2004 .

[17]  Dragan Nesic,et al.  On uniform asymptotic stability of time-varying parameterized discrete-time cascades , 2004, IEEE Transactions on Automatic Control.

[18]  F. Mazenc,et al.  Further constructions of strict Lyapunov functions for time-varying systems , 2005, Proceedings of the 2005, American Control Conference, 2005..

[19]  Eduardo D. Sontag,et al.  Uniform stability properties of switched systems with switchings governed by digraphs , 2005 .

[20]  Eduardo D. Sontag,et al.  On the representation of switched systems with inputs by perturbed control systems , 2005 .

[21]  Chaohong Cai,et al.  Converse Lyapunov theorems and robust asymptotic stability for hybrid systems , 2005, Proceedings of the 2005, American Control Conference, 2005..

[22]  Dragan Nesic,et al.  Lyapunov functions for time-varying systems satisfying generalized conditions of Matrosov theorem , 2007, Proceedings of the 44th IEEE Conference on Decision and Control.

[23]  Michael Malisoff,et al.  Further remarks on strict input-to-state stable Lyapunov functions for time-varying systems , 2005, Autom..

[24]  Michael Malisoff,et al.  Further constructions of control-Lyapunov functions and stabilizing feedbacks for systems satisfying the Jurdjevic-Quinn conditions , 2006, IEEE Transactions on Automatic Control.

[25]  Hassan K. Khalil,et al.  Nonlinear Systems Third Edition , 2008 .

[26]  Wpmh Maurice Heemels,et al.  Introduction to hybrid systems , 2009 .