Permutation polynomials of the form cx+Trql/q(xa)$cx+\text {Tr}_{q^{l}/ q}(x^{a})$ and permutation trinomials over finite fields with even characteristic

Permutation polynomials have been a subject of study for a long time and have applications in many areas of science and engineering. However, only a small number of specific classes of permutation polynomials are described in the literature so far. In this paper we present a number of permutation trinomials over finite fields, which are of different forms.

[1]  Simeon Ball,et al.  Symplectic Spreads and Permutation Polynomials , 2003, International Conference on Finite Fields and Applications.

[2]  Xiang-dong Hou,et al.  A piecewise construction of permutation polynomials over finite fields , 2012, Finite Fields Their Appl..

[3]  Qiang Wang,et al.  Cyclotomy and permutation polynomials of large indices , 2012, Finite Fields Their Appl..

[4]  Lei Hu,et al.  Two classes of permutation polynomials over finite fields , 2012, Finite Fields Their Appl..

[5]  Xiang-dong Hou Determination of a type of permutation trinomials over finite fields , 2013 .

[6]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[7]  Lei Hu,et al.  Constructing permutation polynomials from piecewise permutations , 2014, Finite Fields Their Appl..

[8]  J. Dillon Elementary Hadamard Difference Sets , 1974 .

[9]  Robert L. McFarland,et al.  A Family of Difference Sets in Non-cyclic Groups , 1973, J. Comb. Theory A.

[10]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[11]  Jing Sun,et al.  Interleavers for turbo codes using permutation polynomials over integer rings , 2005, IEEE Transactions on Information Theory.

[12]  Hans Dobbertin,et al.  Almost Perfect Nonlinear Power Functions on GF(2n): The Niho Case , 1999, Inf. Comput..

[13]  Xiang-dong Hou,et al.  A Class of Permutation Binomials over Finite Fields , 2012, 1210.0881.

[14]  Wang Daqing,et al.  Permutation polynomials over finite fields , 1987 .

[15]  June-Bok Lee,et al.  Permutation polynomials and group permutation polynomials , 2001, Bulletin of the Australian Mathematical Society.

[16]  Tao Zhang,et al.  Some new results on permutation polynomials over finite fields , 2015, Des. Codes Cryptogr..

[17]  Jennifer D. Key,et al.  Designs and their codes , 1992, Cambridge tracts in mathematics.

[18]  Tor Helleseth,et al.  Further results on a class of permutation polynomials over finite fields , 2013, Finite Fields Their Appl..

[19]  Xi Chen,et al.  New classes of permutation binomials and permutation trinomials over finite fields , 2015, Finite Fields Their Appl..

[20]  Marie Henderson,et al.  Permutations amongst the Dembowski-Ostrom polynomials , 2001 .

[21]  C. Ding,et al.  Explicit classes of permutation polynomials of F33m , 2009 .

[22]  Lei Hu,et al.  A Class of Binomial Permutation Polynomials , 2013, ArXiv.

[23]  Xiang-dong Hou,et al.  A class of permutation trinomials over finite fields , 2013, 1303.0568.

[24]  Hans Dobbertin,et al.  Almost Perfect Nonlinear Power Functions on GF(2n): The Welch Case , 1999, IEEE Trans. Inf. Theory.

[25]  Cunsheng Ding,et al.  Cyclic Codes from Some Monomials and Trinomials , 2013, SIAM J. Discret. Math..

[26]  Xiangyong Zeng,et al.  Permutation polynomials from trace functions over finite fields , 2015, Finite Fields Their Appl..

[27]  Gohar M. M. Kyureghyan,et al.  Permutation polynomials of the form X + γ Tr(Xκ) , 2016 .

[28]  C. Small,et al.  On permutation polynomials over finite fields , 1987 .

[29]  Rudolf Lide,et al.  Finite fields , 1983 .

[30]  William Cherowitzo,et al.  α-Flocks and Hyperovals , 1998 .

[31]  Xiang-dong Hou,et al.  Permutation polynomials over finite fields - A survey of recent advances , 2015, Finite Fields Their Appl..

[32]  C.J. Corrada Bravo,et al.  Permutation polynomials for interleavers in turbo codes , 2003, IEEE International Symposium on Information Theory. Proceedings.

[33]  H. Dobbertin Kasami Power Functions, Permutation Polynomials and Cyclic Difference Sets , 1999 .

[34]  Baofeng Wu,et al.  Linearized polynomials over finite fields revisited , 2012, Finite Fields Their Appl..

[35]  Henk D. L. Hollmann,et al.  A class of permutation polynomials of F2m related to Dickson polynomials , 2005, Finite Fields Their Appl..

[36]  Cunsheng Ding,et al.  Explicit classes of permutation polynomials of $$ \mathbb{F}_{3^{3m} } $$ , 2009 .

[37]  Kenneth S. Williams,et al.  Note on cubics over GF(2n) and GF(3n) , 1975 .

[38]  Xiang-dong Hou,et al.  Determination of a type of permutation trinomials over finite fields, II , 2013, Finite Fields Their Appl..

[39]  Winfried B. Müller,et al.  Cryptanalysis of the Dickson Scheme , 1985, EUROCRYPT.

[40]  Cunsheng Ding,et al.  Signal Sets From Functions With Optimum Nonlinearity , 2007, IEEE Transactions on Communications.

[41]  Yann Laigle-Chapuy,et al.  Permutation polynomials and applications to coding theory , 2007, Finite Fields Their Appl..

[42]  Lei Hu,et al.  Further results on permutation trinomials over finite fields with even characteristic , 2017, Finite Fields Their Appl..

[43]  Pascale Charpin,et al.  Monomial functions with linear structure and permutation polynomials , 2010 .

[44]  Hans Dobbertin Uniformly Representable Permutation Polynomials , 2001, SETA.

[45]  Qiang Wang,et al.  On Polynomials of the Form xrf(x(q-1)/l) , 2007, Int. J. Math. Math. Sci..

[46]  Cunsheng Ding,et al.  Permutation polynomials over finite fields from a powerful lemma , 2011, Finite Fields Their Appl..

[47]  Michael E. Zieve On some permutation polynomials over Fq of the form x^r h(x^{(q-1)/d}) , 2007, 0707.1110.

[48]  Lei Hu,et al.  Two new permutation polynomials with the form ( x 2 k + x +d) s + x over F 2 n . , 2010 .

[49]  Qiang Wang,et al.  Cyclotomic Mapping Permutation Polynomials over Finite Fields , 2007, SSC.

[50]  Yin Tan,et al.  Constructing Differentially 4-Uniform Permutations Over ${\BBF}_{2^{2k}}$ via the Switching Method , 2013, IEEE Transactions on Information Theory.

[51]  Elwyn R. Berlekamp,et al.  On the Solution of Algebraic Equations over Finite Fields , 1967, Inf. Control..

[52]  Lei Hu,et al.  Several classes of complete permutation polynomials , 2014, Finite Fields Their Appl..

[53]  Cunsheng Ding,et al.  A family of skew Hadamard difference sets , 2006, J. Comb. Theory, Ser. A.

[54]  Qing Xiang,et al.  Permutation polynomials of degree 6 or 7 over finite fields of characteristic 2 , 2010, Finite Fields Their Appl..

[55]  Qiang Wang,et al.  On constructing permutations of finite fields , 2011, Finite Fields Their Appl..

[56]  Pascale Charpin,et al.  On a Class of Permutation Polynomials over F2m , 2008, SETA.

[57]  Kangquan Li,et al.  New Permutation Trinomials Constructed from Fractional Polynomials , 2016, ArXiv.

[58]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.