Integrated Resonators in an Ultralow Loss Si3N4/SiO2 Platform for Multifunction Applications

Integrated optical resonators are key building blocks for an ever-increasing range of applications including optical communications, sensing, and navigation. A challenge to today's photonics integration is realizing circuits and functions that require ultralow loss waveguides on-chip while balancing the waveguide loss with device function and footprint. Incorporating Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub> waveguides into a photonic circuit requires tradeoffs between waveguide loss, device footprint, and desired device specifications. In this paper, we focus on the design of resonator based circuits in the silicon nitride platform and the balancing of desired properties like quality factor <inline-formula><tex-math notation="LaTeX">${\text{Q}}$</tex-math></inline-formula>, free spectral range, finesse, transmission shape with waveguide design, and footprint. The design, fabrication, and characterization of two resonator-based circuit examples operating at 1550 nm are described in detail. The first design is a thin core, large mode-volume bus-coupled resonator, with a 2.72 GHz free spectral range and a measured intrinsic <inline-formula><tex-math notation="LaTeX">${\text{Q}}$</tex-math></inline-formula> of 60 million and loaded <inline-formula><tex-math notation="LaTeX">${\text{Q}}$</tex-math></inline-formula> on the order of 30 Million, representing the highest reported loaded <inline-formula><tex-math notation="LaTeX">${\text{Q}}$</tex-math> </inline-formula> for a large mode volume resonator with a deposited upper cladding. The second circuit is a thicker core, smaller footprint, low loss flat passband third-order resonator filter with an ultrahigh extinction ratio of 80 dB tunable over 100% of the free spectral range and insertion loss under 1.3 dB.

[1]  A. Matsko,et al.  Optical resonators with whispering-gallery modes-part I: basics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  Manfred Hammer,et al.  Cylindrical integrated optical microresonators: Modeling by 3-D vectorial coupled mode theory , 2005 .

[3]  Kyunghun Han,et al.  High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation , 2016 .

[4]  B. Little,et al.  Tunable bandwidth microring resonator filters , 2008, 2008 34th European Conference on Optical Communication.

[5]  John E. Bowers,et al.  Integrated waveguide coupled Si_3N_4 resonators in the ultrahigh-Q regime , 2014 .

[7]  A. Scherer,et al.  Coupled-resonator optical waveguide: a proposal and analysis. , 1999, Optics letters.

[8]  Mark L. Schattenburg,et al.  Stress control of plasma enhanced chemical vapor deposited silicon oxide film from tetraethoxysilane , 2014 .

[9]  Lee K. Strandjord,et al.  Development of compact resonator fiber optic gyroscopes , 2017, 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL).

[10]  F. Xia,et al.  Mode conversion losses in SOI photonic wire based racetrack resonators , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[11]  Peter T. Rakich,et al.  Large Brillouin amplification in silicon , 2015, Nature Photonics.

[12]  P. Dumon,et al.  Silicon microring resonators , 2012 .

[13]  Tymon Barwicz,et al.  Multistage high-order microring-resonator add-drop filters. , 2006, Optics letters.

[14]  K. Vahala,et al.  Sideband spectroscopy and dispersion measurement in microcavities. , 2012, Optics express.

[15]  Grant M. Brodnik,et al.  Integrated Waveguide Brillouin Laser , 2017, 1709.04512.

[16]  J. Bowers,et al.  Ultralow-Loss Planar $\hbox{Si}_{3}\hbox{N}_{4}$ Waveguide Polarizers , 2013, IEEE Photonics Journal.

[17]  John E. Bowers,et al.  Low-Loss Silicon Nitride AWG Demultiplexer Heterogeneously Integrated With Hybrid III–V/Silicon Photodetectors , 2014, Journal of Lightwave Technology.

[18]  K. Vahala,et al.  Microresonator Brillouin gyroscope , 2017 .

[19]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[20]  Preecha P. Yupapin,et al.  The serially coupled multiple ring resonator filters and Vernier effect , 2009 .

[21]  D. Blumenthal,et al.  Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform. , 2014, Optics express.

[22]  Kerry J. Vahala,et al.  Integrated Ultra-High-Q Optical Resonator , 2017 .

[23]  Tao Wei,et al.  Optical fiber sensor based on a radio frequency Mach-Zehnder interferometer. , 2012, Optics letters.

[24]  A. Leinse,et al.  Ultra-low-loss high-aspect-ratio Si3N4 waveguides. , 2011, Optics express.

[25]  C. Roeloffzen,et al.  Silicon nitride microwave photonic circuits. , 2013, Optics express.

[26]  John E. Bowers,et al.  Integrated Ultra-Low-Loss 4-Bit Tunable Delay for Broadband Phased Array Antenna Applications , 2013, IEEE Photonics Technology Letters.

[27]  Rajeev J Ram,et al.  Low Power Thermal Tuning of Second-order Microring Resonators , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[28]  A. Leinse,et al.  Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. , 2011, Optics express.

[29]  Jason C. C. Mak,et al.  Automatic Resonance Alignment of High-Order Microring Filters , 2015, IEEE Journal of Quantum Electronics.

[30]  Michal Lipson,et al.  Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold , 2017 .

[31]  C. M. Natarajan,et al.  On-chip quantum interference between silicon photon-pair sources , 2013, Nature Photonics.

[32]  Min Xiao,et al.  Demonstration of a chip-based optical isolator with parametric amplification , 2016, Nature Communications.