Coherent strong-field control of multiple states by a single chirped femtosecond laser pulse

We present a joint experimental and theoretical study on strong- field photo-ionization of sodium atoms using chirped femtosecond laser pulses. By tuning the chirp parameter, selectivity among the population in the highly excited states 5p, 6p, 7p and 5f, 6f is achieved. Different excitation pathways enabling control are identified by simultaneous ionization and measurement of photoelectron angular distributions employing the velocity map imaging technique. Free electron wave packets at an energy of around 1eV are observed. These photoelectrons originate from two channels. The predominant 2+1+1 resonance enhanced multi-photon ionization (REMPI) proceeds via the strongly driven two-photon transition 4s 3s, and subsequent ionization from the states 5p, 6p and 7p whereas the second pathway involves 3+1 REMPI via the states 5f and 6f. In addition, electron wave packets from two-photon ionization of the non-resonant transiently populated state 3p are observed close to the ionization threshold. A mainly qualitative five-state model for the predominant excitation channel is studied theoretically to provide insights into the physical mechanisms at play. Our analysis shows that by tuning the chirp parameter the dynamics is effectively controlled by dynamic Stark shifts and level crossings. In particular, we show that under the experimental conditions the passage through

[1]  T. Baumert,et al.  Femtosecond strong-field quantum control with sinusoidally phase-modulated pulses , 2006 .

[2]  D. Huestis,et al.  Photoelectron imaging spectrometry: Principle and inversion method , 1996 .

[3]  T. Baumert,et al.  Phase control of a two-photon transition with shaped femtosecond laser-pulse sequences , 2004 .

[4]  Kompa,et al.  Whither the future of controlling quantum phenomena? , 2000, Science.

[5]  V. Elser,et al.  S-matrix for generalized Landau-Zener problem , 1993 .

[6]  T. Baumert,et al.  Strong-field control landscapes of coherent electronic excitation , 2008 .

[7]  Bruce W. Shore,et al.  The Theory of Coherent Atomic Excitation , 1991 .

[8]  T. Baumert,et al.  Coherent control by a single phase shaped femtosecond laser pulse , 1996 .

[9]  Intramanifold level mixing by time-dependent electric fields: Multilevel Landau-Zener effect. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[10]  T. Baumert,et al.  Coherent control of electrons, atoms and molecules with intense shaped light pulses , 2007 .

[11]  C. Trallero-Herrero,et al.  Strong-field atomic phase matching. , 2006, Physical review letters.

[12]  C. Shank,et al.  Selective excitation of vibrational wave packet motion using chirped pulses. , 1995, Physical review letters.

[13]  David H. Parker,et al.  Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen , 1997 .

[14]  C. cohen-tannoudji,et al.  Effect of high frequency irradiation on the dynamical properties of weakly bound electrons , 1976 .

[15]  B. Chatel,et al.  Competition between sequential and direct paths in a two-photon transition , 2003 .

[16]  H. Helm,et al.  Imaging of charged atomic reaction products: Inversion by a two-dimensional regularization method , 1999 .

[17]  B. Sussman,et al.  Dynamic Stark Control of Photochemical Processes , 2006, Science.

[18]  T. Baumert,et al.  Quantum control by ultrafast dressed states tailoring , 2006 .

[19]  N. Vitanov,et al.  Laser-induced population transfer by adiabatic passage techniques. , 2001, Annual review of physical chemistry.

[20]  T. Baumert,et al.  Optimal Control of Atomic, Molecular and Electron Dynamics with Tailored Femtosecond Laser Pulses , 2005 .

[21]  T. Baumert,et al.  Control of interferences in an Autler-Townes doublet: Symmetry of control parameters , 2003 .

[22]  C. Sarpe-Tudoran,et al.  Three-dimensional tomographic reconstruction of ultrashort free electron wave packets , 2009 .

[23]  T. Baumert,et al.  Femtosecond laser photoelectron spectroscopy on atoms and small molecules: prototype studies in quantum control. , 2005, Annual review of physical chemistry.

[24]  Electromagnetically induced transparency and retrieval of light pulses in a Λ-type and a V-type level scheme in Pr3+:Y2SiO5 , 2008 .

[25]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[26]  A. Assion,et al.  Compact, robust, and flexible setup for femtosecond pulse shaping , 2003 .

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  H. Rabitz,et al.  Teaching lasers to control molecules. , 1992, Physical review letters.

[29]  Yaron Silberberg,et al.  Adaptive ultrashort pulse compression and shaping , 1997 .

[30]  Ronnie Kosloff,et al.  Application of chirped ultrashort pulses for generating large-amplitude ground-state vibrational coherence: a computer simulation , 1990 .

[31]  S Zamith,et al.  Observation of coherent transients in ultrashort chirped excitation of an undamped two-level system. , 2001, Physical review letters.

[32]  B. J. Whitaker IMAGING IN MOLECULAR DYNAMICS , 2004 .

[33]  Gerber,et al.  Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses , 1998, Science.

[34]  Dixit,et al.  Observation of interference between quadrupole and dipole transitions in low-energy (2-eV) photoionization from a sodium Rydberg state. , 1986, Physical review letters.

[35]  T. Baumert,et al.  Photoelectron angular distributions from strong-field coherent electronic excitation , 2009 .

[36]  Stuart A. Rice,et al.  Optical Control of Molecular Dynamics , 2000 .

[37]  Y. Silberberg,et al.  Simple route to strong-field coherent control. , 2005, Physical review letters.

[38]  Warren S. Warren,et al.  Adiabatic population inversion in I2 vapor with picosecond laser pulses , 1991 .

[39]  T. Nakajima Above-threshold ionization by chirped laser pulses , 2007 .

[40]  Dennis Saleh Zs , 2001 .

[41]  Vladislav V. Yakovlev,et al.  Feedback quantum control of molecular electronic population transfer , 1997 .

[42]  F. Träger Springer Handbook of Lasers and Optics , 2007 .

[43]  S. Dixit,et al.  Theory of photoelectron angular distributions in resonant multiphoton ionization , 1983 .

[44]  D. Chandler,et al.  Two‐dimensional imaging of state‐selected photodissociation products detected by multiphoton ionization , 1987 .

[45]  Andrew G. Glen,et al.  APPL , 2001 .

[46]  I. Sola,et al.  Quantum control of spin–orbit coupling by dynamic Stark-shifts induced by laser fields , 2006 .

[47]  Corkum,et al.  Efficient molecular dissociation by a chirped ultrashort infrared laser pulse. , 1990, Physical review letters.

[48]  C. Sarpe-Tudoran,et al.  Quantum control by selective population of dressed states using intense chirped femtosecond laser pulses , 2006 .

[49]  Marcos Dantus,et al.  Experimental coherent laser control of physicochemical processes. , 2004, Chemical reviews.

[50]  H. Rabitz,et al.  Closing the Loop on Bond Selective Chemistry Using Tailored Strong Field Laser Pulses , 2002 .

[51]  G. Demeter,et al.  Coherent population transfer in Rb atoms by frequency-chirped laser pulses , 2003 .

[52]  F. T. Hioe,et al.  Generalisation of the Landau-Zener calculation to three levels , 1986 .

[53]  T. Baumert,et al.  Mapping molecular dynamics (Na2) in intense laser fields: another dimension to femtochemistry , 1999 .

[54]  I. Powis,et al.  Two-dimensional charged particle image inversion using a polar basis function expansion , 2004 .

[55]  T. Baumert,et al.  Ultrafast strong field quantum control on K2 dimers , 2006 .

[56]  Thomas Halfmann,et al.  Efficient adiabatic population transfer by two-photon excitation assisted by a laser-induced Stark shift , 2000 .

[57]  Paul Brumer,et al.  Principles of the Quantum Control of Molecular Processes , 2003 .

[58]  A. L’Huillier,et al.  Theoretical aspects of three-photon two-color ionization of xenon through ac-stark-shifted resonant Rydberg states , 1989 .

[59]  Warren,et al.  Generation of narrowband inversion with broadband laser pulses. , 1992, Physical review letters.

[60]  E. V. Nuttall ACT , 1986 .

[61]  Hiroki Nakamura,et al.  EXACT ANALYTICAL SOLUTION OF THE N-LEVEL LANDAU-ZENER-TYPE BOW-TIE MODEL , 1997 .

[62]  C. Trallero-Herrero,et al.  Strong field multiphoton inversion of a three-level system using shaped ultrafast laser pulses. , 2008, Physical review letters.

[63]  S. Zhdanovich,et al.  Population transfer between two quantum states by piecewise chirping of femtosecond pulses: theory and experiment. , 2007, Physical review letters.

[64]  M. Vrakking An iterative procedure for the inversion of two-dimensional ion/photoelectron imaging experiments , 2001 .

[65]  T. Baumert,et al.  Femtosecond pulse shaping by an evolutionary algorithm with feedback , 1997 .

[66]  F. T. Hioe,et al.  Transition probabilities for the three-level Landau-Zener model , 1986 .

[67]  T. Baumert,et al.  Robust photon locking. , 2009, Physical review letters.

[68]  Interference in climbing a quantum ladder system with frequency-chirped laser pulses. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[69]  F. Gostev,et al.  Experimental demonstration of the coherent control of the molecular iodine vibrational dynamics by chirped femtosecond light pulses , 1998 .

[70]  K. Misawa,et al.  Three-level picture for chirp-dependent fluorescence yields under femtosecond optical pulse irradiation , 2003 .

[71]  M. Seaton,et al.  Quantum defect theory , 1983, Molecular Applications of Quantum Defect Theory.

[72]  Peter Hannaford,et al.  Femtosecond laser spectroscopy , 2005 .