The union of minimal hitting sets: Parameterized combinatorial bounds and counting
暂无分享,去创建一个
[1] Boros Edre,et al. On the number of vertices belonging to all maximum stable sets of a graph , 1999 .
[2] Ge Xia,et al. Improved upper bounds for vertex cover , 2010, Theor. Comput. Sci..
[3] James P. Reilly,et al. Advancement in Protein Inference from Shotgun Proteomics Using Peptide Detectability , 2006, Pacific Symposium on Biocomputing.
[4] Ge Xia,et al. Strong computational lower bounds via parameterized complexity , 2006, J. Comput. Syst. Sci..
[5] Peter Damaschke. Parameterized enumeration, transversals, and imperfect phylogeny reconstruction , 2006, Theor. Comput. Sci..
[6] Rolf Niedermeier,et al. Invitation to Fixed-Parameter Algorithms , 2006 .
[7] Miroslav Chlebík,et al. Crown reductions for the Minimum Weighted Vertex Cover problem , 2008, Discret. Appl. Math..
[8] Henning Fernau,et al. On Parameterized Enumeration , 2002, COCOON.
[9] Magnus Wahlström,et al. Counting models for 2SAT and 3SAT formulae , 2005, Theor. Comput. Sci..
[10] Henning Fernau,et al. Parameterized algorithms for d-Hitting Set: The weighted case , 2006, Theor. Comput. Sci..
[11] Stefan Richter,et al. Enumerate and Expand: Improved Algorithms for Connected Vertex Cover and Tree Cover , 2006, Theory of Computing Systems.
[12] Michael R. Fellows,et al. Parameterized Complexity , 1998 .
[13] Jörg Flum,et al. The Parameterized Complexity of Counting Problems , 2004, SIAM J. Comput..
[14] Alexey I Nesvizhskii,et al. Interpretation of Shotgun Proteomic Data , 2005, Molecular & Cellular Proteomics.
[15] Henning Fernau. A Top-Down Approach to Search-Trees: Improved Algorithmics for 3-Hitting Set , 2008, Algorithmica.
[16] Rolf Niedermeier,et al. An efficient fixed-parameter algorithm for 3-Hitting Set , 2003, J. Discrete Algorithms.
[17] Faisal N. Abu-Khzam. Kernelization Algorithms for d-Hitting Set Problems , 2007, WADS.
[18] Ge Xia,et al. On the Effective Enumerability of NP Problems , 2006, IWPEC.
[19] Gustav Nordh,et al. Propositional Abduction is Almost Always Hard , 2005, IJCAI.
[20] Magnus Wahlström,et al. Algorithms, measures and upper bounds for satisfiability and related problems , 2007 .