Variability of GPS derived water vapor and comparison with MODIS data over the Indo-Gangetic plains

Abstract The water vapor is one of the important constituents of the atmosphere that affects the thermodynamics of the atmosphere and has direct impact on the weather conditions. The total column atmospheric water vapor, obtained from Global Positioning System (GPS) and Moderate Resolution Imaging Spectroradiometer (MODIS), is found to be very dynamic over the Indo-Gangetic (IG) plains. In this paper, we present an analysis of GPS data recently deployed (as of May 2007) on the campus of Banaras Hindu University, Varanasi (latitude 25°15′N, longitude 82°59′E). Further, we have compared the variability of water vapor from Kanpur GPS, AERONET and MODIS water vapor data for the year 2007. The monthly variability of water vapor shows characteristic features and dynamics of water vapor between two closely spaced GPS stations, found to be controlled by monsoon dynamics and wind pattern.

[1]  Steven Businger,et al.  GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water , 1994 .

[2]  J. Saastamoinen Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites , 2013 .

[3]  Menas Kafatos,et al.  Retrieval of water vapor using SSM/I and its relation with the onset of monsoon , 2004 .

[4]  V. Gaur,et al.  Estimates of precipitable water vapour from GPS data over the Indian subcontinent , 2005 .

[5]  Steven Businger,et al.  Sensing atmospheric water vapor with the global positioning system , 1993 .

[6]  Anup K. Prasad,et al.  Validation of MODIS Terra, AIRS, NCEP/DOE AMIP‐II Reanalysis‐2, and AERONET Sun photometer derived integrated precipitable water vapor using ground‐based GPS receivers over India , 2009 .

[7]  Steven Businger,et al.  GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water , 1996 .

[8]  Zhaoyan Liu,et al.  Two contrasting dust‐dominant periods over India observed from MODIS and CALIPSO data , 2009 .

[9]  James L. Davis Atmospheric water-vapor signals in GPS data: synergies, correlations, signals and errors , 2001 .

[10]  Gunnar Elgered,et al.  Geodesy by radio interferometry - Water vapor radiometry for estimation of the wet delay , 1991 .

[11]  Merlinde Kay,et al.  Radiative effects of absorbing aerosols and the impact of water vapor , 2000 .

[12]  Brent N. Holben,et al.  Variability of aerosol parameters over Kanpur, northern India , 2004 .

[13]  Steven Businger,et al.  The Promise of GPS in Atmospheric Monitoring , 1996 .

[14]  Ramesh P. Singh,et al.  Total precipitable water over the Arabian Ocean and the Bay of Bengal using SSM/I data , 2000 .

[15]  Anup K. Prasad,et al.  Changes in aerosol parameters during major dust storm events (2001–2005) over the Indo‐Gangetic Plains using AERONET and MODIS data , 2007 .

[16]  S. Jade,et al.  GPS‐based atmospheric precipitable water vapor estimation using meteorological parameters interpolated from NCEP global reanalysis data , 2008 .

[17]  Menas Kafatos,et al.  Influence of a dust storm on carbon monoxide and water vapor over the Indo‐Gangetic Plains , 2007 .

[18]  I. Shapiro,et al.  Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length , 1985 .

[19]  T. Herring,et al.  GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System , 1992 .