Regulatory Sequence Analysis Tools

The web resource Regulatory Sequence Analysis Tools (RSAT) (http://rsat.ulb.ac.be/rsat) offers a collection of software tools dedicated to the prediction of regulatory sites in non-coding DNA sequences. These tools include sequence retrieval, pattern discovery, pattern matching, genome-scale pattern matching, feature-map drawing, random sequence generation and other utilities. Alternative formats are supported for the representation of regulatory motifs (strings or position-specific scoring matrices) and several algorithms are proposed for pattern discovery. RSAT currently holds >100 fully sequenced genomes and these data are regularly updated from GenBank.

[1]  Jun S. Liu,et al.  Gibbs motif sampling: Detection of bacterial outer membrane protein repeats , 1995, Protein science : a publication of the Protein Society.

[2]  J. van Helden,et al.  Statistical analysis of yeast genomic downstream sequences reveals putative polyadenylation signals. , 2000, Nucleic acids research.

[3]  Bart De Moor,et al.  Computational detection of cis-regulatory modules , 2003, ECCB.

[4]  Alexander E. Kel,et al.  TRANSFAC®: transcriptional regulation, from patterns to profiles , 2003, Nucleic Acids Res..

[5]  Matthew R. Pocock,et al.  Taverna: a tool for the composition and enactment of bioinformatics workflows , 2004, Bioinform..

[6]  J. Stoye,et al.  REPuter: the manifold applications of repeat analysis on a genomic scale. , 2001, Nucleic acids research.

[7]  S. Salzberg,et al.  Computational identification of developmental enhancers: conservation and function of transcription factor binding-site clusters in Drosophila melanogaster and Drosophila pseudoobscura , 2004, Genome Biology.

[8]  J. Collado-Vides,et al.  Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. , 1998, Journal of molecular biology.

[9]  J. Collado-Vides,et al.  Discovering regulatory elements in non-coding sequences by analysis of spaced dyads. , 2000, Nucleic acids research.

[10]  B. De Moor,et al.  Toucan: deciphering the cis-regulatory logic of coregulated genes. , 2003, Nucleic acids research.

[11]  Charles Elkan,et al.  The Value of Prior Knowledge in Discovering Motifs with MEME , 1995, ISMB.

[12]  Stefan Kurtz,et al.  REPuter: fast computation of maximal repeats in complete genomes , 1999, Bioinform..

[13]  Gary D. Stormo,et al.  Identification of consensus patterns in unaligned DNA sequences known to be functionally related , 1990, Comput. Appl. Biosci..

[14]  Douglas L. Brutlag,et al.  BioProspector: Discovering Conserved DNA Motifs in Upstream Regulatory Regions of Co-Expressed Genes , 2000, Pacific Symposium on Biocomputing.

[15]  Z. Weng,et al.  Detection of functional DNA motifs via statistical over-representation. , 2004, Nucleic acids research.

[16]  J. Helden Prediction of transcriptional regulation by analysis of the non-coding genome , 2003 .

[17]  Martin C. Frith,et al.  Cluster-Buster: finding dense clusters of motifs in DNA sequences , 2003, Nucleic Acids Res..

[18]  G. Rubin,et al.  Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Julio Collado-Vides,et al.  RegulonDB (version 3.2): transcriptional regulation and operon organization in Escherichia coli K-12 , 2001, Nucleic Acids Res..

[20]  Peter M. Haverty,et al.  MotifViz: an analysis and visualization tool for motif discovery , 2004, Nucleic Acids Res..

[21]  Gary D. Stormo,et al.  Identifying DNA and protein patterns with statistically significant alignments of multiple sequences , 1999, Bioinform..

[22]  G. Stormo,et al.  Identifying protein-binding sites from unaligned DNA fragments. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[23]  J. Collado-Vides,et al.  A web site for the computational analysis of yeast regulatory sequences , 2000, Yeast.

[24]  Kathleen Marchal,et al.  A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling , 2001, Bioinform..

[25]  Michael Q. Zhang,et al.  SCPD: a promoter database of the yeast Saccharomyces cerevisiae , 1999, Bioinform..