Adversarially-trained autoencoders for robust unsupervised new physics searches

[1]  Jennifer Thompson,et al.  Deep-learning jets with uncertainties and more , 2019, SciPost Physics.

[2]  T. Roy,et al.  A robust anomaly finder based on autoencoder , 2019, 1903.02032.

[3]  Bruce Yabsley,et al.  Search for heavy particles decaying into a top-quark pair in the fully hadronic final state in pp collisions at √s = 13 TeV with the ATLAS detector , 2019 .

[4]  Michael Spannowsky,et al.  HYTREES: combining matrix elements and parton shower for hypothesis testing , 2019, The European Physical Journal C.

[5]  A. Pilkington,et al.  Approaching robust EFT limits for CP violation in the Higgs sector , 2019, Physical Review D.

[6]  Damian Podareanu,et al.  Event generation and statistical sampling for physics with deep generative models and a density information buffer , 2019, Nature Communications.

[7]  Rob Verheyen,et al.  Event Generation and Statistical Sampling with Deep Generative Models , 2019 .

[8]  M. Spannowsky,et al.  Searching for processes with invisible particles using a matrix element-based method , 2017, Physics Letters B.

[9]  Maria Spiropulu,et al.  Variational autoencoders for new physics mining at the Large Hadron Collider , 2018, Journal of High Energy Physics.

[10]  D. Shih,et al.  Searching for new physics with deep autoencoders , 2018, Physical Review D.

[11]  Gregor Kasieczka,et al.  QCD or what? , 2018, SciPost Physics.

[12]  A. Simone,et al.  Guiding new physics searches with unsupervised learning , 2018, The European Physical Journal C.

[13]  Liam Moore,et al.  Reports of my demise are greatly exaggerated: $N$-subjettiness taggers take on jet images , 2018, SciPost Physics.

[14]  J. Monk,et al.  Deep learning as a parton shower , 2018, Journal of High Energy Physics.

[15]  Pablo de Castro,et al.  INFERNO: Inference-Aware Neural Optimisation , 2018, Comput. Phys. Commun..

[16]  R. D’Agnolo,et al.  Learning new physics from a machine , 2018, Physical Review D.

[17]  B. Nachman,et al.  Anomaly Detection for Resonant New Physics with Machine Learning. , 2018, Physical review letters.

[18]  Gilles Louppe,et al.  Mining gold from implicit models to improve likelihood-free inference , 2018, Proceedings of the National Academy of Sciences.

[19]  Gilles Louppe,et al.  Constraining Effective Field Theories with Machine Learning. , 2018, Physical review letters.

[20]  Gilles Louppe,et al.  A guide to constraining effective field theories with machine learning , 2018, Physical Review D.

[21]  J. Caudron,et al.  Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector , 2018, 1804.10823.

[22]  C. Frye,et al.  JUNIPR: a framework for unsupervised machine learning in particle physics , 2018, The European Physical Journal C.

[23]  M. Reece,et al.  Opening the black box of neural nets: case studies in stop/top discrimination , 2018, 1804.09278.

[24]  Song Han,et al.  Fast inference of deep neural networks in FPGAs for particle physics , 2018, Journal of Instrumentation.

[25]  T. Hussain,et al.  Measurement of D0, D+, D*+ and D s + production in Pb-Pb collisions at sNN−−−√=5.02 TeV , 2018, 1804.09083.

[26]  M. Schwartz,et al.  Jet charge and machine learning , 2018, Journal of High Energy Physics.

[27]  D. Shih,et al.  Pulling out all the tops with computer vision and deep learning , 2018, Journal of High Energy Physics.

[28]  Y. Wang,et al.  Jet properties in PbPb and pp collisions at sNN=5.02$$ \sqrt{s_{\mathrm{N}\;\mathrm{N}}}=5.02 $$ TeV , 2018 .

[29]  Patrick T. Komiske,et al.  Learning to Classify from Impure Samples , 2018 .

[30]  Patrick T. Komiske,et al.  Learning to classify from impure samples with high-dimensional data , 2018, Physical Review D.

[31]  B. Ravi Kiran,et al.  An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos , 2018, J. Imaging.

[32]  Philip Harris,et al.  Machine learning uncertainties with adversarial neural networks , 2018, The European Physical Journal C.

[33]  Kai Wang,et al.  Quark jet versus gluon jet: fully-connected neural networks with high-level features , 2017, Science China Physics, Mechanics & Astronomy.

[34]  Hui Luo,et al.  Quark jet versus gluon jet: deep neural networks with high-level features , 2017, 1712.03634.

[35]  A. Larkoski,et al.  Novel jet observables from machine learning , 2017, 1710.01305.

[36]  Pedro Antonio Gutiérrez,et al.  Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2 , 2017, The European Physical Journal. C, Particles and Fields.

[37]  Timothy Cohen,et al.  What is the Machine Learning , 2017, 1709.10106.

[38]  B. Nachman,et al.  Jet substructure at the Large Hadron Collider: A review of recent advances in theory and machine learning , 2017, Physics Reports.

[39]  H. Schulz,et al.  Higgs characterisation in the presence of theoretical uncertainties and invisible decays , 2017, 1708.06355.

[40]  B. Nachman,et al.  Classification without labels: learning from mixed samples in high energy physics , 2017, 1708.02949.

[41]  Gregor Kasieczka,et al.  Deep-learned Top Tagging with a Lorentz Layer , 2017, SciPost Physics.

[42]  Atlas Collaboration Search for heavy Higgs bosons $A/H$ decaying to a top quark pair in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector , 2017, 1707.06025.

[43]  M. Freytsis,et al.  (Machine) learning to do more with less , 2017, Journal of High Energy Physics.

[44]  Wojciech Fedorko,et al.  Jet Constituents for Deep Neural Network Based Top Quark Tagging , 2017, ArXiv.

[45]  Pierre Baldi,et al.  Decorrelated jet substructure tagging using adversarial neural networks , 2017, Physical Review D.

[46]  Kyunghyun Cho,et al.  QCD-aware recursive neural networks for jet physics , 2017, Journal of High Energy Physics.

[47]  L. Dery,et al.  Weakly supervised classification in high energy physics , 2017, Journal of High Energy Physics.

[48]  G. Kasieczka,et al.  Deep-learning top taggers or the end of QCD? , 2017, 1701.08784.

[49]  Luke de Oliveira,et al.  Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis , 2017, Computing and Software for Big Science.

[50]  P. Komiske,et al.  Deep learning in color: towards automated quark/gluon jet discrimination , 2016, 1612.01551.

[51]  Gilles Louppe,et al.  Learning to Pivot with Adversarial Networks , 2016, NIPS.

[52]  E. Dawe,et al.  Parton Shower Uncertainties in Jet Substructure Analyses with Deep Neural Networks , 2016, 1609.00607.

[53]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[54]  C. Englert,et al.  Measuring the Higgs-bottom coupling in weak boson fusion , 2015, 1512.03429.

[55]  Johannes Bellm,et al.  Herwig 7.0/Herwig++ 3.0 release note , 2015, 1512.01178.

[56]  P. Uwer,et al.  Extending the Matrix Element Method beyond the Born approximation: calculating event weights at next-to-leading order accuracy , 2015, Journal of High Energy Physics.

[57]  P. Uwer,et al.  Extending the Matrix Element Method beyond the Born approximation: calculating event weights at next-to-leading order accuracy , 2015, 1506.08798.

[58]  Khachatryan,et al.  Performance of the CMS missing transverse momentum reconstruction in pp data at √s = 8 TeV , 2014, 1411.0511.

[59]  V. M. Ghete,et al.  Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at √s = 8 TeV , 2015 .

[60]  Khachatryan,et al.  Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at √s=8 TeV , 2015 .

[61]  C. Collaboration,et al.  Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at √s = 8 TeV , 2015, 1502.02701.

[62]  C. Collaboration,et al.  Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at sqrt(s) = 8 TeV , 2015, 1502.02702.

[63]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[64]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[65]  J. T. Childers,et al.  Light-quark and gluon jet discrimination in [Formula: see text] collisions at [Formula: see text] with the ATLAS detector. , 2014, The European physical journal. C, Particles and fields.

[66]  J. T. Childers,et al.  Light-quark and gluon jet discrimination in pp collisions at √s=7 TeV with the ATLAS detector , 2014, 1405.6583.

[67]  A. Schwartzman,et al.  Jets from jets: re-clustering as a tool for large radius jet reconstruction and grooming at the LHC , 2014, 1407.2922.

[68]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[69]  J. Swanson Search for anomalous production in the highly-boosted all-hadronic final state , 2014 .

[70]  D. Soper,et al.  Finding physics signals with event deconstruction , 2014, 1402.1189.

[71]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[72]  Michael Spannowsky,et al.  Tagging highly boosted top quarks. , 2013, 1308.0540.

[73]  D. Soper,et al.  Finding top quarks with shower deconstruction , 2012, 1211.3140.

[74]  K. Joshi,et al.  The dependency of boosted tagging algorithms on the event colour structure , 2012, 1207.6066.

[75]  Tilman Plehn,et al.  Top Tagging , 2011, 1112.4441.

[76]  M. Cacciari,et al.  FastJet user manual , 2011, 1111.6097.

[77]  Tilman Plehn,et al.  How to improve top-quark tagging , 2011, 1111.5034.

[78]  J. T. Childers,et al.  Performance of Missing Transverse Momentum Reconstruction in Proton-Proton , 2012 .

[79]  D. Soper,et al.  Finding physics signals with shower deconstruction , 2011, 1102.3480.

[80]  V. Lemaitre,et al.  Automation of the matrix element reweighting method , 2010, 1007.3300.

[81]  Andy Buckley,et al.  Rivet user manual , 2010, Comput. Phys. Commun..

[82]  F. Siegert,et al.  Event generation with SHERPA 1.1 , 2008, 0811.4622.

[83]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[84]  R. Frederix,et al.  Top pair invariant mass distribution: a window on new physics , 2007, 0712.2355.

[85]  D. Collaboration A precision measurement of the mass of the top quark , 2004, Nature.

[86]  S. Moretti,et al.  Better Jet Clustering Algorithms , 1997, hep-ph/9707323.

[87]  K. Kondo,et al.  Dynamical Likelihood Method for Reconstruction of Events with Missing Momentum. III. Analysis of a CDF High P T eµ Event as t\bar t Production , 1993 .

[88]  B. Mele,et al.  Searching for new heavy vector bosons in p$\overline{p}$ colliders , 1989 .

[89]  K. Kondo Dynamical Likelihood Method for Reconstruction of Events with Missing Momentum. I. Method and Toy Models , 1988 .

[90]  S. Adachi,et al.  Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton-proton collisions at root s=13 TeV with the ATLAS detector , 2018 .

[91]  Data-driven determination of the energy scale and resolution of jets reconstructed in the ATLAS calorimeters using dijet and multijet events at , 2015 .

[92]  K. Perez,et al.  Performance of missing transverse momentum reconstructionin proton-proton collisions at √s = 7 TeV with ATLAS , 2012 .

[93]  J. Winter,et al.  Event generation with , 2009 .

[94]  M. Feindt,et al.  Measurement of the Top Quark Mass with the Dynamical Likelihood Method using Lepton plus Jets Events with b-tags in pp̄ Collisions at √ s = 1 . 96 TeV , 2008 .