Antimicrobial defense of the intestine.

[1]  M. Schaller,et al.  Paneth cell α-defensin 6 (HD-6) is an antimicrobial peptide , 2014, Mucosal Immunology.

[2]  Jacqueline A. Keane,et al.  Epithelial IL-22RA1-Mediated Fucosylation Promotes Intestinal Colonization Resistance to an Opportunistic Pathogen , 2014, Cell host & microbe.

[3]  B. Becher,et al.  Innate lymphoid cells regulate intestinal epithelial cell glycosylation , 2014, Science.

[4]  Rustem F. Ismagilov,et al.  Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness , 2014, Nature.

[5]  P. Méndez-Samperio Peptidomimetics as a new generation of antimicrobial agents: current progress , 2014, Infection and drug resistance.

[6]  Elizabeth M. Nolan,et al.  Molecular Basis for Self-Assembly of a Human Host-Defense Peptide That Entraps Bacterial Pathogens , 2014, Journal of the American Chemical Society.

[7]  P. Loke,et al.  Bacterial sensor Nod2 prevents inflammation of the small intestine by restricting the expansion of the commensal Bacteroides vulgatus. , 2014, Immunity.

[8]  H. Clevers,et al.  Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cell–derived IFN-γ , 2014, The Journal of experimental medicine.

[9]  Herbert W Virgin,et al.  The Virome in Mammalian Physiology and Disease , 2014, Cell.

[10]  J. Dekker,et al.  REG3γ-deficient mice have altered mucus distribution and increased mucosal inflammatory responses to the microbiota and enteric pathogens in the ileum , 2013, Mucosal Immunology.

[11]  Michael Grabe,et al.  Antibacterial membrane attack by a pore-forming intestinal C-type lectin , 2013, Nature.

[12]  Sarah S. Wilson,et al.  Antiviral Mechanisms of Human Defensins , 2013, Journal of Molecular Biology.

[13]  J. Erb-Downward,et al.  The role of the bacterial microbiome in lung disease , 2013, Expert review of respiratory medicine.

[14]  M. V. van Hoek,et al.  The Human Cathelicidin Antimicrobial Peptide LL-37 as a Potential Treatment for Polymicrobial Infected Wounds , 2013, Front. Immunol..

[15]  Ajay S. Gulati,et al.  Mouse Paneth cell antimicrobial function is independent of Nod2 , 2013, Gut.

[16]  M. Kaplan,et al.  Innate Stat3-mediated induction of the antimicrobial protein Reg3γ is required for host defense against MRSA pneumonia , 2013, The Journal of experimental medicine.

[17]  L. Ratner,et al.  Cytolytic Nanoparticles Attenuate HIV-1 Infectivity , 2013, Antiviral therapy.

[18]  Jacques Ravel,et al.  Vaginal microbiome: rethinking health and disease. , 2012, Annual review of microbiology.

[19]  W. Hardt,et al.  The Bactericidal Activity of the C-type Lectin RegIIIβ against Gram-negative Bacteria involves Binding to Lipid A* , 2012, The Journal of Biological Chemistry.

[20]  R. Gallo,et al.  The antimicrobial protein REG3A regulates keratinocyte proliferation and differentiation after skin injury. , 2012, Immunity.

[21]  M. Pazgier,et al.  Human α-Defensin 6 Promotes Mucosal Innate Immunity Through Self-Assembled Peptide Nanonets , 2012, Science.

[22]  D. Underhill,et al.  Interactions Between Commensal Fungi and the C-Type Lectin Receptor Dectin-1 Influence Colitis , 2012, Science.

[23]  R. Nussinov,et al.  Antimicrobial properties of amyloid peptides. , 2012, Molecular pharmaceutics.

[24]  D. Jewell,et al.  Association of a Functional Variant in the Wnt Co-Receptor LRP6 with Early Onset Ileal Crohn's Disease , 2012, PLoS genetics.

[25]  R. Ley,et al.  The Antibacterial Lectin RegIIIγ Promotes the Spatial Segregation of Microbiota and Host in the Intestine , 2011, Science.

[26]  D. Bumann,et al.  Salmonella-Induced Mucosal Lectin RegIIIβ Kills Competing Gut Microbiota , 2011, PloS one.

[27]  A. Peschel,et al.  Bacterial resistance mechanisms against host defense peptides , 2011, Cellular and Molecular Life Sciences.

[28]  A. Diefenbach,et al.  Control of epithelial cell function by interleukin‐22‐producing RORγt+ innate lymphoid cells , 2011, Immunology.

[29]  J. Segre,et al.  The skin microbiome , 2011, Nature Reviews Microbiology.

[30]  Johannes Buchner,et al.  Reduction of disulphide bonds unmasks potent antimicrobial activity of human β-defensin 1 , 2011, Nature.

[31]  B. Beutler,et al.  Plant and Animal Sensors of Conserved Microbial Signatures , 2010, Science.

[32]  Y. Zhang,et al.  The membrane-bound structure and topology of a human α-defensin indicate a dimer pore mechanism for membrane disruption. , 2010, Biochemistry.

[33]  Mark E. Shirtliff,et al.  Antimicrobial Peptides: Primeval Molecules or Future Drugs? , 2010, PLoS pathogens.

[34]  H. Lashuel,et al.  Amyloidogenic protein-membrane interactions: mechanistic insight from model systems. , 2010, Angewandte Chemie.

[35]  Forest Rohwer,et al.  Viruses in the fecal microbiota of monozygotic twins and their mothers , 2010, Nature.

[36]  Søren Neve,et al.  Plectasin, a Fungal Defensin, Targets the Bacterial Cell Wall Precursor Lipid II , 2010, Science.

[37]  H. Sahl,et al.  Human β-Defensin 3 Inhibits Cell Wall Biosynthesis in Staphylococci , 2010, Infection and Immunity.

[38]  K. Gardner,et al.  Molecular basis for peptidoglycan recognition by a bactericidal lectin , 2010, Proceedings of the National Academy of Sciences.

[39]  Richard A Flavell,et al.  Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. , 2010, The Journal of infectious diseases.

[40]  David F. Smith,et al.  Innate immune lectins kill bacteria expressing blood group antigen , 2010, Nature Medicine.

[41]  A. Aderem,et al.  Staphylococcus aureus evades lysozyme-based peptidoglycan digestion that links phagocytosis, inflammasome activation, and IL-1beta secretion. , 2010, Cell host & microbe.

[42]  Dan R. Littman,et al.  Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria , 2009, Cell.

[43]  G. Weinstock,et al.  Enteric defensins are essential regulators of intestinal microbial ecology , 2009, Nature Immunology.

[44]  Tomas Hrncir,et al.  Nod2 is required for the regulation of commensal microbiota in the intestine , 2009, Proceedings of the National Academy of Sciences.

[45]  Katsumi Matsuzaki,et al.  Control of cell selectivity of antimicrobial peptides. , 2009, Biochimica et biophysica acta.

[46]  K. Gardner,et al.  Regulation of C-type Lectin Antimicrobial Activity by a Flexible N-terminal Prosegment*S⃞ , 2009, Journal of Biological Chemistry.

[47]  D. Jewell,et al.  Genetic Variants of Wnt Transcription Factor TCF-4 (TCF7L2) Putative Promoter Region Are Associated with Small Intestinal Crohn's Disease , 2009, PloS one.

[48]  L. Eckmann,et al.  Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface , 2008, Proceedings of the National Academy of Sciences.

[49]  Sarah L. Brown,et al.  A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells , 2008, Nature.

[50]  Ronald P. DeMatteo,et al.  Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits , 2008, Nature.

[51]  A. Velcich,et al.  The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria , 2008, Proceedings of the National Academy of Sciences.

[52]  H. Tilg,et al.  XBP1 Links ER Stress to Intestinal Inflammation and Confers Genetic Risk for Human Inflammatory Bowel Disease , 2008, Cell.

[53]  M. Hornef,et al.  Secreted enteric antimicrobial activity localises to the mucus surface layer , 2008, Gut.

[54]  G. Plitas,et al.  MyD88-mediated signals induce the bactericidal lectin RegIIIγ and protect mice against intestinal Listeria monocytogenes infection , 2007, The Journal of experimental medicine.

[55]  R. Xavier,et al.  Unravelling the pathogenesis of inflammatory bowel disease , 2007, Nature.

[56]  P. Nde,et al.  Human Defensin α-1 Causes Trypanosoma cruzi Membrane Pore Formation and Induces DNA Fragmentation, Which Leads to Trypanosome Destruction , 2007, Infection and Immunity.

[57]  M. Prevost,et al.  A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system , 2007, Proceedings of the National Academy of Sciences.

[58]  J. Lubkowski,et al.  Crystal structures of human α‐defensins HNP4, HD5, and HD6 , 2006, Protein science : a publication of the Protein Society.

[59]  Ayyalusamy Ramamoorthy,et al.  LL-37, the only human member of the cathelicidin family of antimicrobial peptides. , 2006, Biochimica et biophysica acta.

[60]  L. Hooper,et al.  Symbiotic Bacteria Direct Expression of an Intestinal Bactericidal Lectin , 2006, Science.

[61]  L. Hooper,et al.  Refolding, purification, and characterization of human and murine RegIII proteins expressed in Escherichia coli. , 2006, Protein expression and purification.

[62]  M. Weichenthal,et al.  Reduced Paneth cell α-defensins in ileal Crohn's disease , 2005 .

[63]  H. Lochs,et al.  Spatial Organization and Composition of the Mucosal Flora in Patients with Inflammatory Bowel Disease , 2005, Journal of Clinical Microbiology.

[64]  M. Zanetti The role of cathelicidins in the innate host defenses of mammals. , 2005, Current issues in molecular biology.

[65]  M. Selsted,et al.  Mammalian defensins in the antimicrobial immune response , 2005, Nature Immunology.

[66]  H. Clevers,et al.  Wnt signalling induces maturation of Paneth cells in intestinal crypts , 2005, Nature Cell Biology.

[67]  K. Brogden Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? , 2005, Nature Reviews Microbiology.

[68]  Richard A. Flavell,et al.  Nod2-Dependent Regulation of Innate and Adaptive Immunity in the Intestinal Tract , 2005, Science.

[69]  L. Björck,et al.  α2-Macroglobulin-Proteinase Complexes Protect Streptococcus pyogenes from Killing by the Antimicrobial Peptide LL-37* , 2004, Journal of Biological Chemistry.

[70]  W. Shafer,et al.  Degradation of Human Antimicrobial Peptide LL-37 by Staphylococcus aureus-Derived Proteinases , 2004, Antimicrobial Agents and Chemotherapy.

[71]  M. Hornef,et al.  Increased diversity of intestinal antimicrobial peptides by covalent dimer formation , 2004, Nature Immunology.

[72]  K. Asadullah,et al.  IL-22 increases the innate immunity of tissues. , 2004, Immunity.

[73]  T. Ganz Defensins: antimicrobial peptides of innate immunity , 2003, Nature Reviews Immunology.

[74]  H. Lencastre,et al.  Evolution of Sporadic Isolates of Methicillin-Resistant Staphylococcus aureus (MRSA) in Hospitals and Their Similarities to Isolates of Community-Acquired MRSA , 2003 .

[75]  M. Cadene,et al.  X-ray structure of a voltage-dependent K+ channel , 2003, Nature.

[76]  N. Salzman,et al.  Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin , 2003, Nature.

[77]  James M. Wilson,et al.  Cathelicidins - a family of multifunctional antimicrobial peptides , 2003, Cellular and Molecular Life Sciences CMLS.

[78]  M. Chamaillard,et al.  Nod2 Is a General Sensor of Peptidoglycan through Muramyl Dipeptide (MDP) Detection* , 2003, The Journal of Biological Chemistry.

[79]  Jeffrey I. Gordon,et al.  Angiogenins: a new class of microbicidal proteins involved in innate immunity , 2003, Nature Immunology.

[80]  Å. Danielsson,et al.  Increased expression of antimicrobial peptides and lysozyme in colonic epithelial cells of patients with ulcerative colitis , 2003, Clinical and experimental immunology.

[81]  J. Schröder,et al.  RNase 7, a Novel Innate Immune Defense Antimicrobial Protein of Healthy Human Skin* , 2002, The Journal of Biological Chemistry.

[82]  Pavel Strop,et al.  Crystal Structure of Escherichia coli MscS, a Voltage-Modulated and Mechanosensitive Channel , 2002, Science.

[83]  A. Feller,et al.  Human β-defensin 2 but not β-defensin 1 is expressed preferentially in colonic mucosa of inflammatory bowel disease , 2002 .

[84]  T. Ganz,et al.  Paneth cell trypsin is the processing enzyme for human defensin-5 , 2002, Nature Immunology.

[85]  M. Kagnoff,et al.  Cell Differentiation Is a Key Determinant of Cathelicidin LL-37/Human Cationic Antimicrobial Protein 18 Expression by Human Colon Epithelium , 2002, Infection and Immunity.

[86]  M. Gelb,et al.  The Antibacterial Properties of Secreted Phospholipases A2 , 2002, The Journal of Biological Chemistry.

[87]  Takaaki Ohtake,et al.  Innate antimicrobial peptide protects the skin from invasive bacterial infection , 2001, Nature.

[88]  N. Cianciotto,et al.  Identification of Legionella pneumophila rcp, a pagP-Like Gene That Confers Resistance to Cationic Antimicrobial Peptides and Promotes Intracellular Infection , 2001, Infection and Immunity.

[89]  Mourad Sahbatou,et al.  Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease , 2001, Nature.

[90]  Judy H. Cho,et al.  A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease , 2001, Nature.

[91]  J. Gordon,et al.  Molecular analysis of commensal host-microbial relationships in the intestine. , 2001, Science.

[92]  B. Christensson,et al.  Downregulation of bactericidal peptides in enteric infections: A novel immune escape mechanism with bacterial DNA as a potential regulator , 2001, Nature Medicine.

[93]  S. Normark,et al.  Germ-free and Colonized Mice Generate the Same Products from Enteric Prodefensins* , 2000, The Journal of Biological Chemistry.

[94]  S. Miller,et al.  Genetic and Functional Analysis of a PmrA-PmrB-Regulated Locus Necessary for Lipopolysaccharide Modification, Antimicrobial Peptide Resistance, and Oral Virulence of Salmonella entericaSerovar Typhimurium , 2000, Infection and Immunity.

[95]  William C. Parks,et al.  Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria , 2000, Nature Immunology.

[96]  E. Greenberg,et al.  Bactericidal Activity of Mammalian Cathelicidin-Derived Peptides , 2000, Infection and Immunity.

[97]  B. Murray,et al.  Vancomycin-resistant enterococcal infections. , 2000, The New England journal of medicine.

[98]  K. Matsuzaki Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. , 1999, Biochimica et biophysica acta.

[99]  M. Kagnoff,et al.  Expression and regulation of the human beta-defensins hBD-1 and hBD-2 in intestinal epithelium. , 1999, Journal of immunology.

[100]  L. Matrisian,et al.  Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. , 1999, Science.

[101]  H. Kalbacher,et al.  Inactivation of the dlt Operon inStaphylococcus aureus Confers Sensitivity to Defensins, Protegrins, and Other Antimicrobial Peptides* , 1999, The Journal of Biological Chemistry.

[102]  C. Kozak,et al.  Identification of CRAMP, a Cathelin-related Antimicrobial Peptide Expressed in the Embryonic and Adult Mouse* , 1997, The Journal of Biological Chemistry.

[103]  L. Christa,et al.  HIP/PAP is an adhesive protein expressed in hepatocarcinoma, normal Paneth, and pancreatic cells. , 1996, The American journal of physiology.

[104]  U. Francke,et al.  Structural, functional analysis and localization of the human CAP18 gene , 1996, FEBS letters.

[105]  J. Odeberg,et al.  The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. , 1996, European journal of biochemistry.

[106]  H. Rosenberg Recombinant Human Eosinophil Cationic Protein , 1995, The Journal of Biological Chemistry.

[107]  R. Lehrer,et al.  Bactericidal properties of murine intestinal phospholipase A2. , 1995, The Journal of clinical investigation.

[108]  M. Klagsbrun,et al.  Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[109]  A. Tomasz,et al.  Multiple-antibiotic-resistant pathogenic bacteria. A report on the Rockefeller University Workshop. , 1994, The New England journal of medicine.

[110]  D. Eisenberg,et al.  Defensins promote fusion and lysis of negatively charged membranes , 1993, Protein science : a publication of the Protein Society.

[111]  D. Eisenberg,et al.  Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization. , 1991, Science.

[112]  T. Ganz,et al.  In vitro tumor cell cytolysis mediated by peptide defensins of human and rabbit granulocytes. , 1986, Blood.

[113]  R. Xavier,et al.  Genetic variants synthesize to produce paneth cell phenotypes that define subtypes of Crohn's disease. , 2014, Gastroenterology.

[114]  Andreas Diefenbach,et al.  RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22–producing NKp46+ cells , 2009, Nature Immunology.

[115]  O. Tőke Antimicrobial peptides: new candidates in the fight against bacterial infections. , 2005, Biopolymers.

[116]  P. McCray,et al.  β-Defensins in Lung Host Defense , 2002 .

[117]  J. Browning,et al.  Extracellular phospholipase A2 expression and inflammation: the relationship with associated disease states. , 1993, Journal of lipid mediators.

[118]  T. Ganz,et al.  Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.