Vegetation classification and biogeography of European floodplain forests and alder carrs

Aim: Formalized classifications synthesizing vegetation data at the continental scale are being attempted only now, although they are of key importance for nature conservation planning. Therefore, we aim to provide a vegetation classification and to describe the main biogeographical patterns of floodplain forests and alder carrs in Europe. Location: Europe. Methods: A database of more than 40 000 vegetation plots of floodplain forests and alder carrs across Europe was compiled. After geographic stratification, 16 392 plots were available for classification, which was performed using the supervised method Cocktail. We also searched for new associations using semi-supervised K-means classification. The main biogeographic patterns and climate-related gradients in species composition were determined using detrended correspondence analysis and cluster analysis. Results: Thirty associations of floodplain forests and alder carrs were distinguished, which belong to five alliances. The Alnion incanae includes riparian, seepage and hardwood floodplain forests in the nemoral and hemiboreal zones (dominated by Alnus glutinosa and Fraxinus excelsior) and in the boreal zone (dominated by A. incana). The Osmundo-Alnion represents oceanic vegetation dominated by Alnus glutinosa, Fraxinus angustifolia and F. excelsior distributed mostly on the Iberian Peninsula and composed of species with Atlantic distribution and Iberian endemics. The Populion albae comprises floodplain forests frequently dominated by Fraxinus angustifolia, Populus alba and P. nigra that are widespread in floodplains of large rivers under summer-dry climates in the Mediterranean region. The Platanion orientalis represents eastern Mediterranean floodplain forests dominated by Platanus orientalis. The Alnion glutinosae includes forest swamps dominated by Alnus glutinosa distributed mostly in the nemoral and hemiboreal zones. The main biogeographic patterns within European floodplain forests and alder carrs reflect the climatic contrasts between the Mediterranean, nemoral, boreal and mountain regions. Oceanic floodplain forests differ from those in the rest of Europe. The hydrological regime appears to be the most important factor influencing species composition within regions. Conclusions: This study is the first applying a formalized classification at the association level for a broad vegetation type at the continental scale. The proposed classification provides the scientific basis for the necessary improvement of the habitat classification systems used in European nature conservation.

[1]  Zoltán Botta-Dukát,et al.  A comparative framework for broad‐scale plot‐based vegetation classification , 2015 .

[2]  P. Vít,et al.  Higher genetic diversity in recolonized areas than in refugia of Alnus glutinosa triggered by continent‐wide lineage admixture , 2015, Molecular ecology.

[3]  Milan Chytrý,et al.  Formalized classification of species-poor vegetation: a proposal of a consistent protocol for aquatic vegetation , 2015 .

[4]  Alien species pool influences the level of habitat invasion in intercontinental exchange of alien plants , 2014 .

[5]  Zoltán Botta-Dukát,et al.  Semi‐supervised classification of vegetation: preserving the good old units and searching for new ones , 2014 .

[6]  M. Chytrý,et al.  Vegetation diversity of mesic grasslands (Arrhenatheretalia) in the Iberian Peninsula , 2014 .

[7]  M. Slezak,et al.  Numerical classification of alder carr and riparian alder forests in Slovakia , 2014 .

[8]  R. Gasparri,et al.  Plant communities of Italy: The Vegetation Prodrome , 2014 .

[9]  Ladislav Mucina,et al.  The number of vegetation types in European countries: major determinants and extrapolation to other regions , 2014 .

[10]  P. Kuneš,et al.  Migration Patterns of Subgenus Alnus in Europe since the Last Glacial Maximum: A Systematic Review , 2014, PloS one.

[11]  Sebastian Schmidtlein,et al.  Future no‐analogue vegetation produced by no‐analogue combinations of temperature and insolation , 2014 .

[12]  Chyi-Rong Chiou,et al.  Classification of Taiwan forest vegetation , 2013 .

[13]  R. Tichý,et al.  Review of EUNIS forest habitat classification , 2013 .

[14]  Miquel De Cáceres,et al.  Updating vegetation classifications: an example with New Zealand's woody vegetation , 2013 .

[15]  Antony Unwin,et al.  Comparing Clusterings Using Bertin's Idea , 2012, IEEE Transactions on Visualization and Computer Graphics.

[16]  A. Čarni,et al.  Conspectus of Vegetation Syntaxa in Slovenia , 2012 .

[17]  Jan Douda,et al.  Plant species coexistence at local scale in temperate swamp forest: test of habitat heterogeneity hypothesis , 2011, Oecologia.

[18]  J. C. Costa,et al.  A global view on the riparian forests with Salix neotricha and Populus alba in the Iberian Peninsula (Portugal and Spain) , 2011 .

[19]  R. Venanzoni,et al.  Italian black alder swamps: Their syntaxonomic relationships and originality within the European context , 2011 .

[20]  J. Oldeland,et al.  The Global Index of Vegetation-Plot Databases (GIVD): a new resource for vegetation science , 2011 .

[21]  Attila Lengyel,et al.  Heterogeneity‐constrained random resampling of phytosociological databases , 2011 .

[22]  E. Cano,et al.  Mapa de series, geoseries y geopermaseries de vegetación de España (Memoria del mapa de vegetación potencial de España). Parte II , 2011 .

[23]  J. Douda The role of landscape configuration in plant composition of floodplain forests across different physiographic areas , 2010 .

[24]  Xavier Font,et al.  The management of vegetation classifications with fuzzy clustering , 2010 .

[25]  K. Boublík Formalized classification of the vegetation of Abies alba-dominated forests in the Czech Republic , 2010, Biologia.

[26]  W. Willner,et al.  Effects of different fidelity measures and contexts on the determination of diagnostic species , 2009 .

[27]  Kevin L. Erwin Wetlands and global climate change: the role of wetland restoration in a changing world , 2009, Wetlands Ecology and Management.

[28]  Stephan Hennekens,et al.  Assignment of relevés to pre-defined classes by supervised clustering of plant communities using a new composite index , 2008 .

[29]  Helge Bruelheide,et al.  Using formal logic to classify vegetation , 1997, Folia Geobotanica.

[30]  M. Vilà,et al.  Regional assessment of plant invasions across different habitat types , 2007 .

[31]  Karen J. Esler,et al.  Riparian vegetation: degradation, alien plant invasions, and restoration prospects , 2007 .

[32]  P. Joan,et al.  Regional assessment of plant invasions across different habitat types , 2007 .

[33]  Karel B oublík,et al.  Calcicolous beech forests and related vegetation in the Czech Republic: a comparison of formalized classifications Vápnomilné bučiny České republiky a příbuzná vegetace - srovnání formalizovaných klasifikací , 2007 .

[34]  R. Jan Formalized classification of thermophilous oak forests in the Czech Republic: what brings the Cocktail method? , 2007 .

[35]  M. Chytrý,et al.  Statistical determination of diagnostic species for site groups of unequal size , 2006 .

[36]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[37]  J. Svenning,et al.  The relative roles of environment and history as controls of tree species composition and richness in Europe , 2005 .

[38]  Lubomír Tichý,et al.  New similarity indices for the assignment of relevés to the vegetation units of an existing phytosociological classification , 2005, Plant Ecology.

[39]  J. Izco,et al.  Swamp alder woodlands in Galicia (NW Spain): phytosociological interpretation. Ecological and floristic contrast to western European swamp woodlands and delimitation versus riparian alder woodlands in southern Europe and northern Africa , 2004 .

[40]  M. Chytrý,et al.  Interspecific associations in phytosociological data sets: how do they change between local and regional scale? , 2004, Plant Ecology.

[41]  Ute Döring-Mederake Alnion forests in Lower Saxony (FRG), their ecological requirements, classification and position within Carici elongatae-Alnetum of Northern Central Europe , 1990, Vegetatio.

[42]  Tchou Yen-Tcheng Études écologiques et phytosociologiques sur les forêts riveraines du bas-languedoc , 1949, Vegetatio.

[43]  Tchou Yen-Tcheng Études écologiques et phytosociologiques sur les forêts riveraines du bas-languedoc , 2004, Vegetatio.

[44]  Martin Kočí,et al.  Formalized reproduction of an expert-based phytosociological classification: A case study of subalpine tall-forb vegetation , 2003 .

[45]  Lubomír Tichý,et al.  JUICE, software for vegetation classification , 2002 .

[46]  J. Schaminée,et al.  TURBOVEG, a comprehensive data base management system for vegetation data , 2001 .

[47]  Jaroslav Moravec,et al.  International Code of Phytosociological Nomenclature. 3rd edition , 2000 .

[48]  C. Nilsson,et al.  Alterations of Riparian Ecosystems Caused by River Regulation , 2000 .

[49]  C. Ferris,et al.  Chloroplast DNA phylogeography of Alnus glutinosa (L.) Gaertn. , 1998 .

[50]  V. Westhoff,et al.  De Vegetatie van Nederland. Deel 2: Plantengemeenschappen van wateren, moerassen en natte heiden , 1995 .

[51]  A. Schwabe Monographie Alnus incana-reicher Waldgesellschaften in Europa. Variabilität und Ähnlichkeiten einer azonal verbreiteten Gesellschaftsgruppe , 1985 .

[52]  E. Aune Forest Vegetation in Hemne, Sør-Trøndelag, Western Central Norway , 1973 .

[53]  P. Duchaufour Recherches écologiques sur la Chênaie atlantique française , 1948 .

[54]  Ladislas Gorczyński,et al.  Sur Le Calcul Du Degré Du Continentalisme Et Son Application Dans La Climatologie , 1920 .