Geometry of Spaces of Constant Curvature

Spaces of constant curvature, i.e. Euclidean space, the sphere, and Lobachevskij space, occupy a special place in geometry. They are most accessible to our geometric intuition, making it possible to develop elementary geometry in a way very similar to that used to create the geometry we learned at school. However, since its basic notions can be interpreted in different ways, this geometry can be applied to objects other than the conventional physical space, the original source of our geometric intuition.

[1]  Nicolas Bourbaki,et al.  Groupes et algèbres de Lie , 1971 .

[2]  S. Chern A simple instrinsic proof of the Gauss Bonnet formula for closed Riemannian manifolds , 1944 .

[3]  J. Böhm,et al.  Polyedergeometrie in n-dimensionalen Räumen konstanter Krümmung , 1981 .

[4]  Felix Klein,et al.  Vorlesungen über nicht-euklidische Geometrie , 1928 .

[5]  C. B. Allendoerfer,et al.  The Gauss-Bonnet theorem for Riemannian polyhedra , 1943 .

[6]  D V Alekseevskiĭ,et al.  HOMOGENEOUS RIEMANNIAN SPACES OF NEGATIVE CURVATURE , 1975 .

[7]  Kazuhiko Aomoto,et al.  Analytic structure of Schläfli function , 1977, Nagoya Mathematical Journal.

[8]  Einar Hille,et al.  Introduction to complex analysis , 1983 .

[9]  Ruth Kellerhals,et al.  On the volume of hyperbolic polyhedra , 1989 .

[10]  W. Mayer,et al.  Foundations of the Theory of Lie Groups , 1935 .

[11]  E. Cartan,et al.  Leçons sur la géométrie des espaces de Riemann , 1928 .

[12]  Ruth Kellerhals,et al.  On the volumes of hyperbolic 5-orthoschemes and the trilogarithm , 1992 .

[13]  Warren D. Smith,et al.  A characterization of convex hyperbolic polyhedra and of convex polyhedra inscribed in the sphere , 1992, math/9210218.

[14]  W. Maier,et al.  Inhaltsmessung im R3 fester KrÜmmung , 1954 .

[15]  N. H. Kuiper On Conformally-Flat Spaces in the Large , 1949 .

[16]  Joseph A. Wolf Spaces of Constant Curvature , 1984 .

[17]  J. Milnor Hyperbolic geometry: The first 150 years , 1982 .

[18]  Uffe Haagerup,et al.  Simplices of maximal volume in hyperbolicn-space , 1981 .

[19]  È. Vinberg,et al.  Discrete groups that are generated by reflections , 1971 .

[20]  Anne P. Cobbe SOME ALGEBRAIC PROPERTIES OF CROSSED MODULES , 1951 .

[21]  Paul Kelly,et al.  Projective Geometry And Projective Metrics , 1953 .

[22]  È. Vinberg,et al.  Hyperbolic reflection groups , 1985 .

[23]  K. Nomizu,et al.  Foundations of Differential Geometry , 1963 .

[24]  A. Beardon The Geometry of Discrete Groups , 1995 .

[25]  Don Zagier,et al.  Hyperbolic manifolds and special values of Dedekind zeta-functions , 1986 .