Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique II. Influence of Ink Formulation, Catalyst Layer Uniformity and Thickness

Platinum electrocatalysts supported on high surface area and Vulcan carbon blacks (Pt/HSC, Pt/V) were characterized in rotating disk electrode (RDE) setups for electrochemical area (ECA) and oxygen reduction reaction (ORR) area specific activity (SA) and mass specific activity (MA) at 0.9 V. Films fabricated using several ink formulations and film-drying techniques were characterized for a statistically significant number of independent samples. The highest quality Pt/HSC films exhibited MA 870 ± 91 mA/mgPt and SA 864 ± 56 μA/cm2 Pt while Pt/V had MA 706 ± 42 mA/mgPt and SA 1120 ± 70 μA/cm2 Pt when measured in 0.1 M HClO4, 20 mV/s, 100 kPa O2 and 23±2°C. An enhancement factor of 2.8 in themeasured SA was observable on eliminating Nafion ionomer and employing extremely thin, uniform films (~4.5 μg/cm2 Pt) of Pt/HSC. The ECA for Pt/HSC (99 ± 7 m2/gPt) and Pt/V (65 ± 5 m2/gPt) were statistically invariant and insensitive to film uniformity/thickness/fabrication technique; accordingly, enhancements in MA are wholly attributable to increases in SA. Impedance measurements coupled with scanning electron microscopy were used to de-convolute the losses within the catalyst layer and ascribed to the catalyst layer resistance, oxygen diffusion, and sulfonate anion adsorption/blocking. The ramifications of thesemore » results for proton exchange membrane fuel cells have also been examined.« less

[1]  Jason W. Zack,et al.  Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique I. Impact of Impurities, Measurement Protocols and Applied Corrections , 2015 .

[2]  A. Morin,et al.  Three-dimensional analysis of Nafion layers in fuel cell electrodes , 2014, Nature Communications.

[3]  Anna M. Wise,et al.  Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction. , 2014, Nature chemistry.

[4]  B. Pollet,et al.  The importance of ultrasonic parameters in the preparation of fuel cell catalyst inks , 2014 .

[5]  J. Jorné,et al.  Transient Platinum Oxide Formation and Oxygen Reduction on Carbon-Supported Platinum and Platinum-Cobalt Alloy Electrocatalysts , 2014 .

[6]  R. Rocheleau,et al.  Analytical Procedure for Accurate Comparison of Rotating Disk Electrode Results for the Oxygen Reduction Activity of Pt/C , 2014 .

[7]  S. Kocha,et al.  Enhanced Oxygen Reduction Activity on Pt/C for Nafion-free, Thin, Uniform Films in Rotating Disk Electrode Studies , 2013 .

[8]  R. Jinnouchi,et al.  Catalyst Poisoning Property of Sulfonimide Acid Ionomer on Pt (111) Surface , 2013 .

[9]  Hong Yang,et al.  Platinum-based oxygen reduction electrocatalysts. , 2013, Accounts of chemical research.

[10]  Hoon T. Chung,et al.  Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction , 2013, Nature Communications.

[11]  A. Ohma,et al.  Relationship between gas transport resistance in the catalyst layer and effective surface area of the catalyst , 2013 .

[12]  H. Murata,et al.  The Influence of Experimental Conditions on the Catalyst Degradation in the Accelerated Durability Test Using a Rotating Disk Electrode , 2013 .

[13]  M. Inaba,et al.  Development of Highly Active and Durable Pt Core-Shell Catalysts for Polymer Electrolyte Fuel Cells , 2013 .

[14]  Jason W. Zack,et al.  Influence of Ink Composition on the Electrochemical Properties of Pt/C Electrocatalysts , 2013 .

[15]  Jason W. Zack,et al.  Oxygen Reduction Activity of Vapor-Grown Platinum Nanotubes , 2013 .

[16]  Jia X Wang,et al.  Hollow core supported Pt monolayer catalysts for oxygen reduction , 2013 .

[17]  T. Akita,et al.  Platinum–titanium alloy catalysts on a Magnéli-phase titanium oxide support for improved durability in Polymer Electrolyte Fuel Cells , 2013 .

[18]  K. Kudo,et al.  Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell , 2013 .

[19]  M. Bäumer,et al.  Probing Degradation by IL-TEM: The Influence of Stress Test Conditions on the Degradation Mechanism , 2013 .

[20]  B. Pollet,et al.  Nafion®-stabilised Pt/C electrocatalysts with efficient catalyst layer ionomer distribution for proton exchange membrane fuel cells , 2012 .

[21]  Ke Ke,et al.  An accurate evaluation for the activity of nano-sized electrocatalysts by a thin-film rotating disk electrode: Oxygen reduction on Pt/C , 2012 .

[22]  Rees B Rankin,et al.  Rational Development of Ternary Alloy Electrocatalysts. , 2012, The journal of physical chemistry letters.

[23]  Wenbin Gu,et al.  Impact of Platinum Loading and Catalyst Layer Structure on PEMFC Performance , 2012 .

[24]  Shyam S. Kocha,et al.  Electrochemical Degradation: Electrocatalyst and Support Durability , 2012 .

[25]  T. Nejat Veziroğlu,et al.  Polymer electrolyte fuel cell degradation , 2012 .

[26]  Hiroshi Inoue,et al.  Electrocatalytic activity for oxygen reduction reaction of Pt nanoparticle catalysts with narrow size distribution prepared from [Pt3(CO)3(μ-CO)3]n2- (n = 3–8) complexes , 2011 .

[27]  Kazuhiko Shinohara,et al.  Analysis of proton exchange membrane fuel cell catalyst layers for reduction of platinum loading at Nissan , 2011 .

[28]  I. L. Singer,et al.  Impact of film drying procedures on RDE characterization of Pt/VC electrocatalysts , 2011 .

[29]  M. Arenz,et al.  The particle size effect on the oxygen reduction reaction activity of Pt catalysts: influence of electrolyte and relation to single crystal models. , 2011, Journal of the American Chemical Society.

[30]  N. Marković,et al.  Platinum-alloy nanostructured thin film catalysts for the oxygen reduction reaction. , 2011 .

[31]  T. Akita,et al.  Corrosion-Resistant PEMFC Cathode Catalysts Based on a Magnéli-Phase Titanium Oxide Support Synthesized by Pulsed UV Laser Irradiation , 2011 .

[32]  Y. Shao-horn,et al.  Oxygen Reduction Activity of PtxNi1-x Alloy Nanoparticles on Multiwall Carbon Nanotubes , 2011 .

[33]  S. Hirai,et al.  Effects of Nafion ionomer and carbon particles on structure formation in a proton-exchange membran , 2011 .

[34]  Miaofang Chi,et al.  Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. , 2011, Journal of the American Chemical Society.

[35]  Peter J. Yunker,et al.  Suppression of the coffee-ring effect by shape-dependent capillary interactions , 2011, Nature.

[36]  Ping Liu,et al.  Kirkendall effect and lattice contraction in nanocatalysts: a new strategy to enhance sustainable activity. , 2011, Journal of the American Chemical Society.

[37]  D. Thompsett,et al.  Unprecedented structural sensitivity toward average terrace width: Nafion adsorption at Pt{hkl} electrodes , 2011 .

[38]  A. Weber,et al.  Modeling Low-Platinum-Loading Effects in Fuel-Cell Catalyst Layers , 2011 .

[39]  K. Ota,et al.  Development of group 4 and 5 metal oxide-based cathodes for polymer electrolyte fuel cell , 2011 .

[40]  Haruhiko Yamada,et al.  Relative Humidity Dependence of Pt Utilization in Polymer Electrolyte Fuel Cell Electrodes: Effects of Electrode Thickness, Ionomer-to-Carbon Ratio, Ionomer Equivalent Weight, and Carbon Support , 2011 .

[41]  Gang Wu,et al.  High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt , 2011, Science.

[42]  A. Weber,et al.  Analysis of Oxygen-Transport Diffusion Resistance in Proton-Exchange-Membrane Fuel Cells , 2011 .

[43]  K. Shinohara,et al.  Simultaneous Electrochemical Measurement of Oxygen Reduction and Pt Oxide Formation/Reduction on Pt Nanoparticle Surface , 2011 .

[44]  Ke Ke,et al.  Reconsideration of the quantitative characterization of the reaction intermediate on electrocatalysts by a rotating ring-disk electrode: The intrinsic yield of H2O2 on Pt/C , 2011 .

[45]  Ib Chorkendorff,et al.  The Pt(111)/electrolyte interface under oxygen reduction reaction conditions: an electrochemical impedance spectroscopy study. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[46]  M. Arenz,et al.  IL-TEM investigations on the degradation mechanism of Pt/C electrocatalysts with different carbon supports , 2011 .

[47]  Y. Shao-horn,et al.  Size Influence on the Oxygen Reduction Reaction Activity and Instability of Supported Pt Nanoparticles , 2011 .

[48]  M. Arenz,et al.  Electrochemically induced nanocluster migration , 2010 .

[49]  Hubert A. Gasteiger,et al.  Handbook of Fuel Cells , 2010 .

[50]  J. Feliu,et al.  Spectroelectrochemical Studies of the Pt(111)/Nafion Interface Cast Electrode , 2010 .

[51]  S. Alia,et al.  Porous Platinum Nanotubes for Oxygen Reduction and Methanol Oxidation Reactions , 2010 .

[52]  Ping Liu,et al.  Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. , 2010, Angewandte Chemie.

[53]  K. Ota,et al.  Tantalum oxide-based compounds as new non-noble cathodes for polymer electrolyte fuel cell , 2010 .

[54]  M. Inaba,et al.  Effect of Core Size on Activity and Durability of Pt Core-Shell Catalysts for PEFCs , 2010 .

[55]  H. Murata,et al.  Analysis of the Relation between Oxidation State and ORR Activity of Pt by Linear Sweep Voltammetry , 2010 .

[56]  S. Kocha,et al.  Examination of the activity and durability of PEMFC catalysts in liquid electrolytes , 2010 .

[57]  N. Marković,et al.  Oxygen reduction reaction at three-phase interfaces. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[58]  K. Swider-Lyons,et al.  Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. , 2010, Analytical chemistry.

[59]  C. Murray,et al.  Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes). , 2010, Journal of the American Chemical Society.

[60]  N. Marković,et al.  Three Phase Interfaces at Electrified Metal−Solid Electrolyte Systems 1. Study of the Pt(hkl)−Nafion Interface , 2010 .

[61]  A. S. Bondarenko,et al.  Characterisation of the electrochemical redox behaviour of Pt electrodes by potentiodynamic electrochemical impedance spectroscopy , 2010 .

[62]  B. Piela,et al.  Electrochemical Evaluation of Porous Non‐Platinum Oxygen Reduction Catalysts for Polymer Electrolyte Fuel Cells , 2009 .

[63]  F. Jaouen O2 Reduction Mechanism on Non-Noble Metal Catalysts for PEM Fuel Cells. Part II: A Porous-Electrode Model To Predict the Quantity of H2O2 Detected by Rotating Ring-Disk Electrode , 2009 .

[64]  Hubert A. Gasteiger,et al.  Proton Conduction and Oxygen Reduction Kinetics in PEM Fuel Cell Cathodes: Effects of Ionomer-to-Carbon Ratio and Relative Humidity , 2009 .

[65]  M. Arenz,et al.  Adsorbate-induced surface segregation for core-shell nanocatalysts. , 2009, Angewandte Chemie.

[66]  John W. Weidner,et al.  Hydrogen Peroxide Formation Rates in a PEMFC Anode and Cathode Effect of Humidity and Temperature , 2020, 2002.09476.

[67]  Sean James Ashton,et al.  Non-destructive transmission electron microscopy study of catalyst degradation under electrochemical treatment , 2008 .

[68]  T. Pajkossy,et al.  Anion-adsorption-related frequency-dependent double layer capacitance of the platinum-group metals in the double layer region , 2008 .

[69]  Sean James Ashton,et al.  Fuel cell catalyst degradation on the nanoscale , 2008 .

[70]  Sanjeev Mukerjee,et al.  Direct Spectroscopic Observation of the Structural Origin of Peroxide Generation from Co-Based Pyrolyzed Porphyrins for ORR Applications , 2008 .

[71]  M. Arenz,et al.  Measurement of oxygen reduction activities via the rotating disc electrode method : from Pt model surfaces to carbon-supported high surface area catalysts. , 2008 .

[72]  R. Crooks,et al.  Effect of particle size on the kinetics of the electrocatalytic oxygen reduction reaction catalyzed by Pt dendrimer-encapsulated nanoparticles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[73]  K. Sasaki,et al.  Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters , 2007, Science.

[74]  Bongjin Simon Mun,et al.  Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. , 2007, Nature materials.

[75]  M. Inaba,et al.  Controlled growth and shape formation of platinum nanoparticles and their electrochemical properties , 2006 .

[76]  H. Yano,et al.  Temperature dependence of oxygen reduction activity at Nafion-coated bulk Pt and Pt/carbon black catalysts. , 2006, The journal of physical chemistry. B.

[77]  M. Shao,et al.  Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction. , 2005, The journal of physical chemistry. B.

[78]  E. Higuchi,et al.  Effect of loading level in platinum-dispersed carbon black electrocatalysts on oxygen reduction activity evaluated by rotating disk electrode , 2005 .

[79]  P N Ross,et al.  The impact of geometric and surface electronic properties of pt-catalysts on the particle size effect in electrocatalysis. , 2005, The journal of physical chemistry. B.

[80]  Ping Yu,et al.  PtCo/C cathode catalyst for improved durability in PEMFCs , 2005 .

[81]  P. Pickup,et al.  An electrochemical impedance spectroscopy study of fuel cell electrodes , 2005 .

[82]  H. Gasteiger,et al.  Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs , 2005 .

[83]  M. Inaba,et al.  Effect of Agglomeration of Pt/C Catalyst on Hydrogen Peroxide Formation , 2004 .

[84]  M. Balasubramanian,et al.  Pt submonolayers on metal nanoparticles—novel electrocatalysts for H2 oxidation and O2 reduction , 2003 .

[85]  P. Pickup,et al.  Ionic Conductivity of PEMFC Electrodes Effect of Nafion Loading , 2003 .

[86]  T. Pajkossy,et al.  On the origin of the double layer capacitance maximum of Pt(111) single crystal electrodes , 2003 .

[87]  Hubert A. Gasteiger,et al.  Handbook of fuel cells : fundamentals technology and applications , 2003 .

[88]  T. Pajkossy,et al.  The double layer capacity of Pt(100) in aqueous perchlorate solutions , 2002 .

[89]  Alireza Zolfaghari,et al.  Capacitance of the double-layer at polycrystalline Pt electrodes bearing a surface-oxide film , 2002 .

[90]  A. Wokaun,et al.  Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes , 2002 .

[91]  V. Radmilović,et al.  Oxygen Reduction on Carbon-Supported Pt−Ni and Pt−Co Alloy Catalysts , 2002 .

[92]  R. Durand,et al.  High frequency impedance measurements on Pt(111) in sulphuric and perchloric acids , 2001 .

[93]  Dieter M. Kolb,et al.  Double layer capacitance of Pt(111) single crystal electrodes , 2001 .

[94]  Yann Bultel,et al.  Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion , 2001 .

[95]  Hubert A. Gasteiger,et al.  Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study , 2001 .

[96]  O. Antoine,et al.  RRDE study of oxygen reduction on Pt nanoparticles inside Nafion®: H2O2 production in PEMFC cathode conditions , 2000 .

[97]  Andrzej Lasia,et al.  The use of regularization methods in the deconvolution of underlying distributions in electrochemical processes , 1999 .

[98]  P. Pickup,et al.  CHARACTERIZATION OF IONIC CONDUCTIVITY PROFILES WITHIN PROTON EXCHANGE MEMBRANE FUEL CELL GAS DIFFUSION ELECTRODES BY IMPEDANCE SPECTROSCOPY , 1999 .

[99]  Edson A. Ticianelli,et al.  Oxygen electrocatalysis on thin porous coating rotating platinum electrodes , 1998 .

[100]  R. Savinell,et al.  O 2 Reduction on an Ink‐Type Rotating Disk Electrode Using Pt Supported on High‐Area Carbons , 1998 .

[101]  H. Gasteiger,et al.  Characterization of High‐Surface‐Area Electrocatalysts Using a Rotating Disk Electrode Configuration , 1998 .

[102]  R. Savinell,et al.  Kinetics of O{sub 2} reduction on a Pt electrode covered with a thin film of solid polymer electrolyte , 1997 .

[103]  A. Lasia Porous electrodes in the presence of a concentration gradient , 1997 .

[104]  H. Gasteiger,et al.  Oxygen reduction on platinum low-index single-crystal surfaces in sulfuric acid solution. Rotating ring - Pt(hkl) disk studies , 1995 .

[105]  M. Watanabe,et al.  An experimental prediction of the preparation condition of Nafion-coated catalyst layers for PEFCs , 1995 .

[106]  E. Yeager,et al.  Structural effects in electrocatalysis: oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions , 1994 .

[107]  Robert Durand,et al.  Kinetic study of electrochemical reactions at catalyst-recast ionomer interfaces from thin active layer modelling , 1994 .

[108]  R. Durand,et al.  Particle size effect for oxygen reduction and methanol oxidation on Pt/C inside a proton exchange membrane , 1994 .

[109]  Sanjeev Mukerjee,et al.  Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells , 1993 .

[110]  T. Springer,et al.  A microelectrode study of oxygen reduction at the platinum-recast-nafion film interface , 1992 .

[111]  Shimshon Gottesfeld,et al.  Thin-film catalyst layers for polymer electrolyte fuel cell electrodes , 1992 .

[112]  E. Yeager,et al.  Examination of the ionomer/electrode interface using the ferric/ferrous redox couple , 1989 .

[113]  Charles R. Martin,et al.  Oxygen Reduction at Nafion Film‐Coated Platinum Electrodes: Transport and Kinetics , 1988 .

[114]  S. Gottesfeld,et al.  Oxygen Reduction Kinetics on a Platinum RDE Coated with a Recast Nafion Film , 1987 .

[115]  D. Gough,et al.  Rotated, membrane-covered oxygen electrode , 1980 .

[116]  David Gough,et al.  Membrane-covered, rotated disk electrode , 1979 .

[117]  P. Stonehart,et al.  The use of porous electrodes to obtain kinetic rate constants for rapid reactions and adsorption isotherms of poisons , 1976 .

[118]  T. Sokoloski,et al.  Steady-state and nonsteady-state transport through membranes using rotating-disk electrode polarography: description and properties of a rapid response new technique. , 1973, Journal of pharmaceutical sciences.

[119]  A. Damjanović,et al.  Electrode kinetics of oxygen reduction on oxide-free platinum electrodes☆ , 1967 .

[120]  K. Gubbins,et al.  The Solubility and Diffusivity of Oxygen in Electrolytic Solutions , 1965 .