Surface Moisture and Vegetation Cover Analysis for Drought Monitoring in the Southern Kruger National Park Using Sentinel-1, Sentinel-2, and Landsat-8

During the southern summer season of 2015 and 2016, South Africa experienced one of the most severe meteorological droughts since the start of climate recording, due to an exceptionally strong El Niño event. To investigate spatiotemporal dynamics of surface moisture and vegetation structure, data from ESA’s Copernicus Sentinel-1/-2 and NASA’s Landsat-8 for the period between March 2015 and November 2017 were utilized. In combination, these radar and optical satellite systems provide promising data with high spatial and temporal resolution. Sentinel-1 C-band data was exploited to derive surface moisture based on a hyper-temporal co-polarized (vertical-vertical—VV) radar backscatter change detection approach, describing dynamics between dry and wet seasons. Vegetation information from a TLS (Terrestrial Laser Scanner)-derived canopy height model (CHM), as well as the normalized difference vegetation index (NDVI) from Sentinel-2 and Landsat-8, were utilized to analyze vegetation structure types and dynamics with respect to the surface moisture index (SurfMI). Our results indicate that our combined radar–optical approach allows for a separation and retrieval of surface moisture conditions suitable for drought monitoring. Moreover, we conclude that it is crucial for the development of a drought monitoring system for savanna ecosystems to integrate land cover and vegetation information for analyzing surface moisture dynamics derived from Earth observation time series.

[1]  Igor N. Garkusha,et al.  Using Sentinel-1 data for monitoring of soil moisture , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[2]  David Western,et al.  Predicting Extreme Droughts in Savannah Africa: A Comparison of Proxy and Direct Measures in Detecting Biomass Fluctuations, Trends and Their Causes , 2015, PloS one.

[3]  P. Curran,et al.  The relationship between ERS-2 SAR backscatter and soil moisture: Generalization from a humid to semi-arid transect , 2000 .

[4]  J. Post,et al.  Drought dynamics and vegetation productivity in different land management systems of Eastern Cape, South Africa - a remote sensing perspective. , 2017 .

[5]  Mathieu Rouault,et al.  Intensity and spatial extension of drought in South Africa at different time scales , 2004 .

[6]  Jean Rousselle,et al.  Mapping near‐surface soil moisture with RADARSAT‐1 synthetic aperture radar data , 2004 .

[7]  Xing Li,et al.  A Global Grassland Drought Index (GDI) Product: Algorithm and Validation , 2015, Remote. Sens..

[8]  N. F. Glenn,et al.  Technical Note / Note technique Establishing a relationship between soil moisture and RADARSAT-1 SAR data obtained over the Great Basin, Nevada, U.S.A. , 2004 .

[9]  Qi Gao,et al.  Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at 100 m Resolution , 2017, Sensors.

[10]  John van Genderen,et al.  Fundamentals of satellite remote sensing: an environmental approach , 2016, Int. J. Digit. Earth.

[11]  W. Verstraeten,et al.  Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests , 2006 .

[12]  A. D. Gregorio,et al.  Land Cover Classification System (LCCS): Classification Concepts and User Manual , 2000 .

[13]  W. Wagner,et al.  A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data , 1999 .

[14]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[15]  R. Scholes,et al.  Tree-grass interactions in Savannas , 1997 .

[16]  J R Carr,et al.  Establishing a relationship between soil moisture and RADARSAT-1 SAR data obtained over the Great Basin, Nevada, U.S.A. , 2004 .

[17]  D. Hillel Introduction to environmental soil physics , 1982 .

[18]  Kevin E. Trenberth,et al.  Indices of El Niño Evolution , 2001 .

[19]  C. Schmullius,et al.  Assessment of Aboveground Woody Biomass Dynamics Using Terrestrial Laser Scanner and L-Band ALOS PALSAR Data in South African Savanna , 2016 .

[20]  Entering Uncharted Waters: El Niño and the threat to food security , 2015 .

[21]  João Paulo Ramos Teixeira,et al.  Remote sensing of drought: Progress, challenges and opportunities , 2015 .

[22]  W. Wagner,et al.  Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates. , 2017, Geophysical research letters.

[23]  Laura M. Norman,et al.  Multi-index time series monitoring of drought and fire effects on desert grasslands , 2016 .

[24]  Arnaud Mialon,et al.  The SMOS Soil Moisture Retrieval Algorithm , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Monitoring drought using multi-sensor remote sensing data in cropland of Gansu Province , 2014 .

[26]  M. Mancini,et al.  Retrieving Soil Moisture Over Bare Soil from ERS 1 Synthetic Aperture Radar Data: Sensitivity Analysis Based on a Theoretical Surface Scattering Model and Field Data , 1996 .

[27]  Hankui K. Zhang,et al.  Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences , 2018, Remote Sensing of Environment.

[28]  Anthi-Eirini K. Vozinaki,et al.  Soil Moisture Content Estimation Based on Sentinel-1 and Auxiliary Earth Observation Products. A Hydrological Approach , 2017, Sensors.

[29]  U. C. Kothyari,et al.  Soil moisture estimation using ERS 2 SAR data: a case study in the Solani River catchment/Estimation de l’humidité du sol grâce à des données ERS-2 SAR: étude de cas dans le bassin de la rivière Solani , 2004 .

[30]  Yann Kerr,et al.  The hydrosphere State (hydros) Satellite mission: an Earth system pathfinder for global mapping of soil moisture and land freeze/thaw , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Gregory Asner,et al.  Hyper-Temporal C-Band SAR for Baseline Woody Structural Assessments in Deciduous Savannas , 2016, Remote. Sens..

[32]  B. Dieppois,et al.  South African droughts and decadal variability , 2015, Natural Hazards.

[33]  Rainer Brüggemann,et al.  Exploring survival strategies of African Savanna trees by partial ordering techniques , 2017, Ecol. Informatics.

[34]  R. J. Scholes,et al.  Leaf green-up in a semi-arid African savanna –separating tree and grass responses to environmental cues , 2007 .

[35]  Klaus Scipal,et al.  An Improved Soil Moisture Retrieval Algorithm for ERS and METOP Scatterometer Observations , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Roberta E. Martin,et al.  Topo-edaphic controls over woody plant biomass in South African savannas , 2012 .

[37]  Giorgio Boni,et al.  An evaluation of the potential of Sentinel 1 for improving flash flood predictions via soil moisture–data assimilation , 2017 .

[38]  Gidon Eshel,et al.  Forecasting Zimbabwean maize yield using eastern equatorial Pacific sea surface temperature , 1994, Nature.

[39]  Enrico Cadau,et al.  SENTINEL-2 SEN2COR: L2A Processor for Users , 2016 .

[40]  Wolfgang Wagner,et al.  The Potential of Sentinel-1 for Monitoring Soil Moisture with a High Spatial Resolution at Global Scale , 2009 .

[41]  S. Said,et al.  Soil moisture estimation using ERS 2 SAR data: a case study in the Solani River catchment/Estimation de l’humidité du sol grâce à des données ERS-2 SAR: étude de cas dans le bassin de la rivière Solani , 2004 .

[42]  A. Timmermann,et al.  Increasing frequency of extreme El Niño events due to greenhouse warming , 2014 .

[43]  Driss El Hadani,et al.  Developing a remotely sensed drought monitoring indicator for Morocco. , 2018, Geosciences.

[44]  T. Arkebauer,et al.  The development and evaluation of a soil moisture index , 2009 .

[45]  E. Wood,et al.  17. Anthropogenic intensification of southern African flash droughts as exemplified by the 2015/16 season , 2018 .

[46]  M. Hill Vegetation index suites as indicators of vegetation state in grassland and savanna: An analysis with simulated SENTINEL 2 data for a North American transect , 2013 .

[47]  Mehrez Zribi,et al.  New methodology for soil surface moisture estimation and its application to ENVISAT-ASAR multi-incidence data inversion , 2005 .

[48]  A. Potgieter,et al.  A technique to evaluate ENSO-based maize production strategies , 1997 .

[49]  David Small,et al.  Flattening Gamma: Radiometric Terrain Correction for SAR Imagery , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[50]  M. Claverie,et al.  Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. , 2016, Remote sensing of environment.

[51]  A. Kulmatiski,et al.  A savanna response to precipitation intensity , 2017, PloS one.

[52]  K. J. Wessels,et al.  Relationship between herbaceous biomass and 1‐km2 Advanced Very High Resolution Radiometer (AVHRR) NDVI in Kruger National Park, South Africa , 2006 .

[53]  Compton J. Tucker,et al.  From El Niño to La Niña: Vegetation Response Patterns over East and Southern Africa during the 1997-2000 Period. , 2002 .

[54]  R. Scholes,et al.  Determinants of Soil Respiration in a Semi-Arid Savanna Ecosystem, Kruger National Park, South Africa , 2011 .

[55]  Venkat Lakshmi,et al.  Soil Moisture Remote Sensing: State‐of‐the‐Science , 2017 .

[56]  Mehrez Zribi,et al.  Potential of ASAR/ENVISAT for the characterization of soil surface parameters over bare agricultural fields , 2005 .

[57]  Rob Slotow,et al.  Ecological Thresholds in the Savanna Landscape: Developing a Protocol for Monitoring the Change in Composition and Utilisation of Large Trees , 2008, PloS one.

[58]  Emanuele Santi,et al.  Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation , 2013 .

[59]  Thian Yew Gan,et al.  Retrieving near‐surface soil moisture from Radarsat SAR data , 1999 .

[60]  Eric S. Kasischke,et al.  Remote monitoring of spatial and temporal surface soil moisture in fire disturbed boreal forest ecosystems with ERS SAR imagery , 2007 .

[61]  Emanuele Santi,et al.  A Comparison of Algorithms for Retrieving Soil Moisture from ENVISAT/ASAR Images , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[62]  Christiane Schmullius,et al.  Multi-Source Data Processing Middleware for Land Monitoring within a Web-Based Spatial Data Infrastructure for Siberia , 2013, ISPRS Int. J. Geo Inf..

[63]  T. M. Yanosky,et al.  Principles of Soil and Plant Water Relations , 2005 .

[64]  Jakob Zscheischler,et al.  A drought event composite analysis using satellite remote-sensing based soil moisture , 2017 .

[65]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.

[66]  C. Werner,et al.  Sentinel-1 support in the GAMMA Software , 2015 .

[67]  I. Masih,et al.  A review of droughts on the African continent: a geospatial and long-term perspective , 2014 .

[68]  Charles Werner,et al.  Sentinel-1 Support in the GAMMA Software , 2016 .

[69]  M. England,et al.  Future Changes to El Niño–Southern Oscillation Temperature and Precipitation Teleconnections , 2017 .

[70]  Niall P. Hanan,et al.  Response of carbon fluxes to water relations in a savanna ecosystem in South Africa , 2008 .