Colloidal Nanophotonics: State-of-the-Art and Prospective

Nanocrystalline platform based on colloidal nanophysics, nanochemistry and nanoengineering is the promising unique versatile scientific and technological basement for emerging nano-optoelectronics. The approach offers straightforward multilevel throughout bottom-up scaling including: subnanometer molecular scale interfaces, nanometer-scale semiconductor quantum dot systems, submicron photonic scale. Notably, the colloidal multilevel bottom-up approach as the technological paradigm and semiconductor quantum dots as its principal physical entity, when coupled together do offer the unprecedented road map towards versatile and affordable platform where every optoelectronic component, including light emitting diodes, LEDs, lasers, photodetectors, signal processing elements (e.g. electrooptical modulators, optical switches) and various sensors can be developed in unified and cheap technological processes to compete with existing multi-base and expensive technological approaches. Interfacing of electronic devices with biosystems is the additional essential advantageous outcome of the colloidal bottom-up approach.

[1]  V. Klimov,et al.  Spectroscopic insights into the performance of quantum dot light-emitting diodes , 2013 .

[2]  Alexander L. Efros,et al.  Interband absorption of light in a semiconductor sphere , 2005 .

[3]  Yizheng Jin,et al.  Solution-processed, high-performance light-emitting diodes based on quantum dots , 2014, Nature.

[4]  Louis E. Brus,et al.  A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites , 1983 .

[5]  Philippe Colomban,et al.  The Use of Metal Nanoparticles to Produce Yellow, Red and Iridescent Colour, from Bronze Age to Present Times in Lustre Pottery and Glass: Solid State Chemistry, Spectroscopy and Nanostructure , 2009 .

[6]  Andrei Schliwa,et al.  Electronic structure and exciton-phonon interaction in two-dimensional colloidal CdSe nanosheets. , 2012, Nano letters.

[7]  K. Landfester,et al.  From soft to hard: the generation of functional and complex colloidal monolayers for nanolithography , 2012 .

[8]  M. Faraday X. The Bakerian Lecture. —Experimental relations of gold (and other metals) to light , 1857, Philosophical Transactions of the Royal Society of London.

[9]  D. Guzatov,et al.  Nonresonant surface-enhanced Raman scattering of ZnO quantum dots with Au and Ag nanoparticles. , 2013, ACS nano.

[10]  D. Zahn,et al.  Surface enhanced Raman scattering of light by ZnO nanostructures , 2011 .

[11]  U. Kreibig,et al.  The limitation of electron mean free path in small silver particles , 1969 .

[12]  S. Gaponenko Optical properties of semiconductor nanocrystals , 1998 .

[13]  Nikolai Gaponik,et al.  Quantum dot integrated LEDs using photonic and excitonic color conversion , 2011 .

[14]  Andrey L. Rogach,et al.  Semiconductor Nanocrystal Quantum Dots , 2008 .

[15]  Hilmi Volkan Demir,et al.  Color science of nanocrystal quantum dots for lighting and displays , 2013 .

[16]  Hedi Mattoussi,et al.  Strategies for interfacing inorganic nanocrystals with biological systems based on polymer-coating. , 2015, Chemical Society reviews.

[17]  Igor Nabiev,et al.  Enhanced Luminescence of CdSe Quantum Dots on Gold Colloids , 2002 .

[18]  Vladimir P. Bykov Spontaneous Emission in a Periodic Structure , 1972 .

[19]  Ulrike Woggon,et al.  Optical Properties of Semiconductor Quantum Dots , 1996 .

[20]  V. V. Stankevich,et al.  Plasmonic Enhancement of Molecular Fluorescence near Silver Nanoparticles: Theory, Modeling, and Experiment , 2012 .

[21]  Savas Delikanli,et al.  Amplified spontaneous emission and lasing in colloidal nanoplatelets. , 2014, ACS nano.

[22]  Sergey V. Gaponenko,et al.  Photonic band gap phenomenon and optical properties of artificial opals , 1997 .

[23]  A. Eychmüller,et al.  Colloidal semiconductor nanocrystals: the aqueous approach. , 2013, Chemical Society reviews.

[24]  Paola Ricciardi,et al.  Raman spectroscopy of copper nanoparticle-containing glass matrices: ancient red stained-glass windows , 2009 .

[25]  Nikolai Gaponik,et al.  Fine structure of coupled optical modes in photonic molecules , 2004 .

[26]  C. Seassal,et al.  Colloidal nanophotonics: the emerging technology platform. , 2016, Optics express.

[27]  H. Demir,et al.  Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots. , 2011, ACS nano.

[28]  V. Bondarenko,et al.  Time‐resolved spectroscopy of visibly emitting porous silicon , 1994 .

[29]  Edward H. Sargent Colloidal quantum dot solar cells , 2012 .

[30]  Martin Moskovits,et al.  Surface-Enhanced Raman Scattering , 2006 .

[31]  Joseph R. Lakowicz,et al.  Metal-Enhanced Fluorescence (MEF) Due to Silver Colloids on a Planar Surface: Potential Applications of Indocyanine Green to in Vivo Imaging. , 2003, The journal of physical chemistry. A.

[32]  H. Demir,et al.  Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites. , 2014, Optics express.

[33]  T. Wei,et al.  Multiple-exposure colloidal lithography for enhancing light output of GaN-based light-emitting diodes by patterning Ni/Au electrodes. , 2016, Optics express.

[34]  Jagjit Nanda,et al.  Single-exciton optical gain in semiconductor nanocrystals , 2007, Nature.

[35]  Glenn P. Goodrich,et al.  Plasmonic enhancement of molecular fluorescence. , 2007, Nano letters.

[36]  John Silcox,et al.  Non-blinking semiconductor nanocrystals , 2009, Nature.

[37]  V. Bulović,et al.  Emergence of colloidal quantum-dot light-emitting technologies , 2012, Nature Photonics.

[38]  Benisty,et al.  Intrinsic mechanism for the poor luminescence properties of quantum-box systems. , 1991, Physical review. B, Condensed matter.

[39]  Ian C. Freestone,et al.  AN INVESTIGATION OF THE ORIGIN OF THE COLOUR OF THE LYCURGUS CUP BY ANALYTICAL TRANSMISSION ELECTRON MICROSCOPY , 1990 .

[40]  O. Voznyy,et al.  25th Anniversary Article: Colloidal Quantum Dot Materials and Devices: A Quarter‐Century of Advances , 2013, Advanced materials.

[41]  Experimental study of the focusing effects of a ruby rod (plane mirrors) during the laser emission in relaxed state , 1977 .

[42]  Savas Delikanli,et al.  Experimental Determination of the Absorption Cross-Section and Molar Extinction Coefficient of Colloidal CdSe Nanoplatelets , 2015 .

[43]  V. V. Stankevich,et al.  Plasmon-enhanced fluorescence of labeled biomolecules on top of a silver sol-gel film , 2012 .

[44]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[45]  Sergey V. Gaponenko,et al.  Introduction to Nanophotonics: Introduction , 2010 .

[46]  V. Bulović,et al.  Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. , 2009, Nano letters.

[47]  Alexander L Efros,et al.  Suppression of auger processes in confined structures. , 2010, Nano letters.

[48]  Hilmi Volkan Demir,et al.  Semiconductor nanocrystals as rare-earth alternatives , 2011 .

[49]  M. V. Ermolenko,et al.  Electroabsorption by 0D, 1D, and 2D nanocrystals: a comparative study of CdSe colloidal quantum dots, nanorods, and nanoplatelets. , 2014, ACS nano.

[50]  C. Borczyskowski,et al.  Bioconjugates Based on Semiconductor Quantum Dots and Porphyrin Ligands: Properties, Exciton Relaxation Pathways and Singlet Oxygen Generation Efficiency for Photodynamic Therapy Applications , 2013 .

[51]  Ulrike Woggon,et al.  Photons in coupled microsphere resonators , 2006 .

[52]  D. W. Hall,et al.  Quantum confinement effects of semiconducting microcrystallites in glass , 1987 .

[53]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[54]  Handong Sun,et al.  Excitonics of semiconductor quantum dots and wires for lighting and displays , 2014 .

[55]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[56]  M. Bawendi,et al.  Surface-enhanced emission from single semiconductor nanocrystals. , 2002, Physical review letters.