Review of Remote Sensing Methods to Map Coffee Production Systems

The coffee sector is working towards sector-wide commitments for sustainable production. Yet, knowledge of where coffee is cultivated and its environmental impact remains limited, in part due to the challenges of mapping coffee using satellite remote sensing. We recognize the urgency to capitalize on recent technological advances to improve remote sensing methods and generate more accurate, reliable, and scalable approaches to coffee mapping. In this study, we provide a systematic review of satellite-based approaches to mapping coffee extent, which produced 43 articles in the peer-reviewed and gray literature. We outline key considerations for employing effective approaches, focused on the need to balance data affordability and quality, classification complexity and accuracy, and generalizability and site-specificity. We discuss research opportunities for improved approaches by leveraging the recent expansion of diverse satellite sensors and constellations, optical/Synthetic Aperture Radar data fusion approaches, and advances in cloud computing and deep learning algorithms. We highlight the need for differentiating between production systems and the need for research in important coffee-growing geographies. By reviewing the range of techniques successfully used to map coffee extent, we provide technical recommendations and future directions to enable accurate and scalable coffee maps.

[1]  Stacy M. Philpott,et al.  Coffee and Conservation: a Global Context and the Value of Farmer Involvement , 2003 .

[2]  Marcos Adami,et al.  Análise espectral e temporal da cultura do café em imagens Landsat , 2004 .

[3]  Kenneth Grogan,et al.  A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring , 2016, Remote. Sens..

[4]  P. Dennison,et al.  Quantifying understory vegetation density using small-footprint airborne lidar , 2018, Remote Sensing of Environment.

[5]  B. Lin Resilience in Agriculture through Crop Diversification: Adaptive Management for Environmental Change , 2011 .

[6]  Tao Zhou,et al.  Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region , 2017, Sensors.

[7]  Aditya Singh,et al.  Mapping Species Composition of Forests and Tree Plantations in Northeastern Costa Rica with an Integration of Hyperspectral and Multitemporal Landsat Imagery , 2015, Remote. Sens..

[8]  P. Mausel,et al.  Application of spectral mixture analysis to Amazonian land-use and land-cover classification , 2004 .

[9]  Ernesto Illy,et al.  The complexity of coffee. , 2002, Scientific American.

[10]  Onisimo Mutanga,et al.  Separability of coffee leaf rust infection levels with machine learning methods at Sentinel-2 MSI spectral resolutions , 2017, Precision Agriculture.

[11]  R. Rice,et al.  Shade Coffee: A Disappearing Refuge for Biodiversity Shade coffee plantations can contain as much biodiversity as forest habitats , 1996 .

[12]  Julien Radoux,et al.  Sentinel-2's Potential for Sub-Pixel Landscape Feature Detection , 2016, Remote. Sens..

[13]  Ivette Perfecto,et al.  Biodiversity, yield, and shade coffee certification , 2005 .

[14]  Zhe Zhu,et al.  Current status of Landsat program, science, and applications , 2019, Remote Sensing of Environment.

[15]  Xueliang Zhang,et al.  Deep learning in remote sensing applications: A meta-analysis and review , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[16]  Onisimo Mutanga,et al.  Developing detailed age-specific thematic maps for coffee (Coffea arabica L.) in heterogeneous agricultural landscapes using random forests applied on Landsat 8 multispectral sensor , 2017 .

[17]  A. Pullin,et al.  Guidelines for Systematic Review in Conservation and Environmental Management , 2006, Conservation biology : the journal of the Society for Conservation Biology.

[18]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[19]  Steven A. Sader,et al.  Spectral analysis and classification accuracy of coffee crops using Landsat and a topographic‐environmental model , 2007 .

[20]  Mikaela Schmitt-Harsh,et al.  Landscape change in Guatemala: Driving forces of forest and coffee agroforest expansion and contraction from 1990 to 2010 , 2013 .

[21]  Kevin P. Price,et al.  Mapping coffee plantations with Landsat imagery: an example from El Salvador , 2012 .

[22]  Lei Guo,et al.  When Deep Learning Meets Metric Learning: Remote Sensing Image Scene Classification via Learning Discriminative CNNs , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Christina Corbane,et al.  Use of high-resolution satellite imagery in an integrated model to predict the distribution of shade coffee tree hybrid zones. , 2010 .

[24]  José Gobbi,et al.  Is biodiversity-friendly coffee financially viable? An analysis of five different coffee production systems in western El Salvador , 2000 .

[25]  Giles M. Foody,et al.  Good practices for estimating area and assessing accuracy of land change , 2014 .

[26]  Russell Greenberg,et al.  Biodiversity Loss in Latin American Coffee Landscapes: Review of the Evidence on Ants, Birds, and Trees , 2008, Conservation biology : the journal of the Society for Conservation Biology.

[27]  Jürgen Schweikart,et al.  Acquiring geodata for coffee mapping using remote sensing data based on a pilot study in the Mbinga district Tanzania , 2014 .

[28]  Russell G. Congalton,et al.  Nominal 30-m Cropland Extent Map of Continental Africa by Integrating Pixel-Based and Object-Based Algorithms Using Sentinel-2 and Landsat-8 Data on Google Earth Engine , 2017, Remote. Sens..

[29]  Meine van Noordwijk,et al.  Carbon stock assessment for a forest-to-coffee conversion landscape in Sumber-Jaya (Lampung, Indonesia): from allometric equations to land use change analysis , 2002 .

[30]  Tom P. Evans,et al.  Carbon stocks in coffee agroforests and mixed dry tropical forests in the western highlands of Guatemala , 2012, Agroforestry Systems.

[31]  Jan Verbesselt,et al.  Combining satellite data for better tropical forest monitoring , 2016 .

[32]  Martha C. Anderson,et al.  Free Access to Landsat Imagery , 2008, Science.

[33]  Jansle Vieira Rocha,et al.  Utilização de imagens-fração derivadas do sensor modis para o mapeamento de lavouras de café , 2014 .

[34]  Joseph Mascaro,et al.  Combating deforestation: From satellite to intervention , 2018, Science.

[35]  P. Läderach,et al.  A bitter cup: climate change profile of global production of Arabica and Robusta coffee , 2015, Climatic Change.

[36]  B. Rapidel,et al.  Coffee and Cocoa Production in Agroforestry—A Climate-Smart Agriculture Model , 2016 .

[37]  B. Jong,et al.  Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico , 2009, Agroforestry Systems.

[38]  M. Groom,et al.  Shade-grown coffee in Puerto Rico: Opportunities to preserve biodiversity while reinvigorating a struggling agricultural commodity , 2012 .

[39]  Mariana Belgiu,et al.  Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis , 2018 .

[40]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[41]  Grace B. Villamor,et al.  Assessing land-use typologies and change intensities in a structurally complex Ghanaian cocoa landscape , 2018, Applied Geography.

[42]  Sylvie Philipp-Foliguet,et al.  Multiscale Classification of Remote Sensing Images , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[43]  Jianya Gong,et al.  Forest Type Identification with Random Forest Using Sentinel-1A, Sentinel-2A, Multi-Temporal Landsat-8 and DEM Data , 2018, Remote. Sens..

[44]  Vanessa Cristina Oliveira de Souza,et al.  GEOTHECNOLOGIES IN THE ASSESSMENT OF LAND USE CHANGES IN COFFEE REGIONS OF THE STATE OF MINAS GERAIS IN BRAZIL , 2007 .

[45]  David P. Roy,et al.  A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring , 2017, Remote. Sens..

[46]  Bernardo Rudorff,et al.  Monitoring biennial bearing effect on coffee yield using modis remote sensing imagery , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[47]  Scott R Loarie,et al.  Persistence of Forest Birds in the Costa Rican Agricultural Countryside , 2007, Conservation biology : the journal of the Society for Conservation Biology.

[48]  M. Batistella,et al.  A Comparative Study of Landsat TM and SPOT HRG Images for Vegetation Classification in the Brazilian Amazon. , 2008, Photogrammetric engineering and remote sensing.

[49]  Stacy M. Philpott,et al.  Shade Coffee: Update on a Disappearing Refuge for Biodiversity , 2014 .

[50]  Robert R. De Wulf,et al.  Delineation of Cocoa Agroforests Using Multiseason Sentinel-1 SAR Images: A Low Grey Level Range Reduces Uncertainties in GLCM Texture-Based Mapping , 2019, ISPRS Int. J. Geo Inf..

[51]  A. Formaggio,et al.  Discrimination of agricultural crops in a tropical semi-arid region of Brazil based on L-band polarimetric airborne SAR data , 2009 .

[52]  Stefano Ricci,et al.  Collect Earth: Land Use and Land Cover Assessment through Augmented Visual Interpretation , 2016, Remote. Sens..

[53]  Fergus L. Sinclair,et al.  The role of local knowledge in determining shade composition of multistrata coffee systems in Chiapas, Mexico , 2007, Biodiversity and Conservation.

[54]  Onisimo Mutanga,et al.  Integrating age in the detection and mapping of incongruous patches in coffee (Coffea arabica) plantations using multi-temporal Landsat 8 NDVI anomalies , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[55]  Fernando Shinji Kawakubo,et al.  Mapping coffee crops in southeastern Brazil using spectral mixture analysis and data mining classification , 2016 .

[56]  Dengsheng Lu,et al.  Land‐cover classification in the Brazilian Amazon with the integration of Landsat ETM+ and Radarsat data , 2007 .

[57]  Arely Guadalupe Sánchez-Méndez,et al.  Análisis de imágenes multiespectrales para la detección de cultivos y detección de plagas y enfermedades en la producción de café , 2018, Res. Comput. Sci..

[58]  Ivette Perfecto,et al.  Conservation of biodiversity in coffee agroecosystems: a tri-taxa comparison in southern Mexico , 2003, Biodiversity & Conservation.

[59]  A. Veldkamp,et al.  utomated high resolution mapping of coffee in Rwanda using an xpert Bayesian network , 2014 .

[60]  Johan Oszwald,et al.  Assessing the ecological vulnerability of forest landscape to agricultural frontier expansion in the Central Highlands of Vietnam , 2020, Int. J. Appl. Earth Obs. Geoinformation.

[61]  A. Iles,et al.  Guest Editorial, part of a Special Feature on A Social-Ecological Analysis of Diversified Farming Systems: Benefits, Costs, Obstacles, and Enabling Policy Frameworks Diversified Farming Systems: An Agroecological, Systems-based Alternative to Modern Industrial Agriculture , 2012 .

[62]  C. Justice,et al.  The Harmonized Landsat and Sentinel-2 surface reflectance data set , 2018, Remote Sensing of Environment.

[63]  Meryl Breton Richards,et al.  Interactions between Carbon Sequestration and Shade Tree Diversity in a Smallholder Coffee Cooperative in El Salvador , 2014, Conservation biology : the journal of the Society for Conservation Biology.

[64]  F. Damatta,et al.  Ecophysiology of coffee growth and production , 2007 .

[65]  Chris Bacon,et al.  Using Google Earth Engine to Map Complex Shade-Grown Coffee Landscapes in Northern Nicaragua , 2018, Remote. Sens..

[66]  M. Batistella,et al.  Linear mixture model applied to Amazonian vegetation classification , 2003 .

[67]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[68]  G. Fonseca,et al.  Biodiversity conservation in neotropical coffee (Coffea arabica) plantations. , 2004 .

[69]  Nicolas Chaumont,et al.  Forest bolsters bird abundance, pest control and coffee yield. , 2013, Ecology letters.

[70]  Mauricio Alves Moreira,et al.  Geotecnologias para mapear lavouras de café nos estados de Minas Gerais e São Paulo , 2010 .

[71]  M. Herold,et al.  The Importance of Consistent Global Forest Aboveground Biomass Product Validation , 2019, Surveys in Geophysics.

[72]  Dar A. Roberts,et al.  Ten-Year Landsat Classification of Deforestation and Forest Degradation in the Brazilian Amazon , 2013, Remote. Sens..

[73]  Juilson Jubanski,et al.  Detection of large above-ground biomass variability in lowland forest ecosystems by airborne LiDAR , 2012 .

[74]  M. Obersteiner,et al.  Projected Shifts in Coffea arabica Suitability among Major Global Producing Regions Due to Climate Change , 2015, PloS one.

[75]  Tom P. Evans,et al.  Classification of Coffee-Forest Landscapes Using Landsat TM Imagery and Spectral Mixture Analysis , 2013 .

[76]  Stacy M. Philpott,et al.  Ecological Complexity and Pest Control in Organic Coffee Production: Uncovering an Autonomous Ecosystem Service , 2010 .

[77]  Víctor M. Toledo,et al.  Biodiversity Conservation in Traditional Coffee Systems of Mexico , 1999 .

[78]  Mitchel Langford,et al.  Land cover mapping in a tropical hillsides environment: a case study in the Cauca region of Colombia , 1997 .

[79]  D. Bray Forest Cover Dynamics and Forest Transitions in Mexico and Central America: Towards a “Great Restoration”? , 2009 .

[80]  Nicholas C. Manoukis,et al.  Vegetation classification of Coffea on Hawaii Island using WorldView-2 satellite imagery , 2017 .

[81]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[82]  Eduardo Delgado Assad,et al.  Comparação de dados dos satélites Ikonos-II e Landsat/ETM+ no estudo de áreas cafeeiras , 2006 .

[83]  Onisimo Mutanga,et al.  Mapping spatial variability of foliar nitrogen in coffee (Coffea arabica L.) plantations with multispectral Sentinel-2 MSI data , 2018 .

[84]  Bruno Rapidel,et al.  Ecosystem-based adaptation for smallholder farmers: Definitions, opportunities and constraints , 2015 .

[85]  Fabio Alfonso González,et al.  Multispectral image processing in coffee and cocoa crops , 2017 .

[86]  R. Rice,et al.  A Review of Ecosystem Services, Farmer Livelihoods, and Value Chains in Shade Coffee Agroecosystems , 2011 .