Selected nanotechnologies for renewable energy applications

As the world faces serious energy challenges, the development and implementation of renewable energy technologies become increasingly important. In this article, we offer a glimpse of the role nanotechnology, in particular, innovations of nanostructures and nanomaterials, is playing in the development of selected renewable energy technologies. These technologies, based on the authors' research interests, include (1) converting the energy of sunlight directly into electricity using solar cells; (2) converting solar energy into hydrogen fuel by splitting water into its constituents; (3) storing hydrogen in solid-state forms; and (4) utilizing hydrogen to generate electricity through the use of fuel cells. It is clear that nanotechnology-enabled renewable energy technologies are starting to scale up dramatically. As they become mature and cost effective in the decades to come, renewable energy could eventually replace the traditional, environmentally unfriendly, fossil fuels. Published in 2007 by John Wiley & Sons, Ltd.

[1]  Peter C. Eklund,et al.  Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes , 2000 .

[2]  R. Birringer,et al.  Hydrogen in amorphous and nanocrystalline metals , 1988 .

[3]  Peter Lamp,et al.  Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes , 1998 .

[4]  H. Inoue,et al.  A new electrode material for nickel-metal hydride batteries : MgNi-graphite composites prepared by ball-milling , 1999 .

[5]  Hubert A. Gasteiger,et al.  Kinetics of oxygen reduction on Pt(hkl) electrodes : Implications for the crystallite size effect with supported Pt electrocatalysts , 1997 .

[6]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[7]  Sue A. Carter,et al.  Charge transfer in photovoltaics consisting of interpenetrating networks of conjugated polymer and TiO2 nanoparticles , 1999 .

[8]  P. Ross,et al.  The Structure and Activity of Pt‐Co Alloys as Oxygen Reduction Electrocatalysts , 1990 .

[9]  Michael Grätzel,et al.  Dye-Sensitized Solid-State Heterojunction Solar Cells , 2005 .

[10]  Leong Ming Gan,et al.  Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells , 2002 .

[11]  H. Imamura,et al.  Hydriding–dehydriding behavior of magnesium composites obtained by mechanical grinding with graphite carbon , 2000 .

[12]  Sanjeev Mukerjee,et al.  Role of Structural and Electronic Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction An In Situ XANES and EXAFS Investigation , 1995 .

[13]  Jan M. Macak,et al.  Dye-sensitized anodic TiO2 nanotubes , 2005 .

[14]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[15]  Michael Grätzel,et al.  Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells , 2004 .

[16]  Hubert A. Gasteiger,et al.  Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys , 1994 .

[17]  Michael Grätzel,et al.  Applications of functionalized transition metal complexes in photonic and optoelectronic devices , 1998 .

[18]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[19]  T. Ishibashi,et al.  Kinetics of the photocatalytic water-splitting reaction on TiO2 and Pt/TiO2 studied by time-resolved infrared absorption spectroscopy , 2003 .

[20]  B. Stansfield,et al.  On the control of carbon nanostructures for hydrogen storage applications , 2004 .

[21]  Anusorn Kongkanand,et al.  Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction reaction. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[22]  R. Kirchheim,et al.  Segregation and diffusion of hydrogen in grain boundaries of palladium , 1987 .

[23]  M. Fichtner Nanotechnological Aspects in Materials for Hydrogen Storage , 2005 .

[24]  Xiaobo Chen,et al.  Synthesis of titanium dioxide (TiO2) nanomaterials. , 2006, Journal of nanoscience and nanotechnology.

[25]  R. Schulz,et al.  Hydrogen desorption kinetics of a mechanically milled MgH2+5at.%V nanocomposite , 2000 .

[26]  Ghassan E. Jabbour,et al.  Organic-Based Photovoltaics: Toward Low-Cost Power Generation , 2005 .

[27]  P. Downes,et al.  Hydrogen storage in sonicated carbon materials , 2001 .

[28]  Dynamics of light-induced water cleavage in colloidal systems , 1981 .

[29]  H. Inoue,et al.  Raman and X‐Ray Photoelectron Spectroscopic Investigations on a New Electrode Material for Nickel‐Metal Hydride Batteries: MgNi‐Graphite Composites Prepared by Ballmilling , 1999 .

[30]  Tsuyoshi Takata,et al.  Photocatalytic Activity Enhancing for Titanium Dioxide by Co-doping with Bromine and Chlorine , 2004 .

[31]  T. Kitamura,et al.  Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization. , 2005, Physical chemistry chemical physics : PCCP.

[32]  Akira Fujishima,et al.  Titanium dioxide photocatalysis , 2000 .

[33]  H. Tributsch,et al.  Dye sensitization solar cells: a critical assessment of the learning curve , 2004 .

[34]  H. Inoue,et al.  Surface modification of MgNi alloy with graphite by ball-milling for use in nickel-metal hydride batteries , 1996 .

[35]  Jun Akikusa,et al.  Photoelectrolysis of water to hydrogen in p-SiC/Pt and p-SiC/ n-TiO2 cells , 2002 .

[36]  James L. Gole,et al.  Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale , 2004 .

[37]  Jianyi Lin,et al.  Room-temperature hydrogen uptake by TiO(2) nanotubes. , 2005, Inorganic chemistry.

[38]  A. Załuska,et al.  Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage , 2001 .

[39]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[40]  K. Friedrich,et al.  CO adsorption and oxidation on a Pt(111) electrode modified by ruthenium deposition: an IR spectroscopic study , 1996 .

[41]  K. Kinoshita,et al.  Particle Size Effects for Oxygen Reduction on Highly Dispersed Platinum in Acid Electrolytes , 1990 .

[42]  Ho-Kwang Mao,et al.  Hydrogen Clusters in Clathrate Hydrate , 2002, Science.

[43]  Z. Yamani,et al.  Significance of pH measurements in photocatalytic splitting of water using 355 nm UV laser , 2005 .

[44]  Y. Nakato,et al.  A nano-modified Si/TiO2 composite electrode for efficient solar water splitting , 2004 .

[45]  Reiner Kirchheim,et al.  Hydrogen as a probe for the average thickness of a grain boundary , 1987 .

[46]  Andreas Züttel,et al.  Hydrogen storage in carbon nanostructures , 2002 .

[47]  H. Gasteiger,et al.  Electro-oxidation of small organic molecules on well-characterized PtRu alloys , 1994 .

[48]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[49]  K. D. de Jong,et al.  Hydrogen storage using physisorption – materials demands , 2001 .

[50]  Xingzhong Zhao,et al.  A novel hybrid nanocrystalline TiO2 electrode for the dye-sensitized nanocrystalline solar cells , 2005 .

[51]  H. Arakawa,et al.  Significant effect of iodide addition on water splitting into H2 and O2 over Pt-loaded TiO2 photocatalyst: suppression of backward reaction , 2003 .

[52]  Robert Schulz,et al.  Hydrogen storage properties of the mechanically milled MgH2–V nanocomposite , 1999 .

[53]  F. Darkrim,et al.  Review of hydrogen storage by adsorption in carbon nanotubes , 2002 .

[54]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[55]  A. Seayad,et al.  Recent Advances in Hydrogen Storage in Metal‐Containing Inorganic Nanostructures and Related Materials , 2004 .

[56]  Qin Xin,et al.  Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells , 2003 .

[57]  H. Arakawa,et al.  Effect of carbonate salt addition on the photocatalyticdecomposition of liquid water over Pt–TiO2catalyst , 1997 .

[58]  Chen,et al.  High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures , 1999, Science.

[59]  Robert C. Haddon,et al.  Proton exchange membrane fuel cells with carbon nanotube based electrodes , 2004 .

[60]  J. Gole,et al.  Enhanced Nitrogen Doping in TiO2 Nanoparticles , 2003 .

[61]  Xiaobo Chen,et al.  Doped semiconductor nanomaterials. , 2005, Journal of nanoscience and nanotechnology.

[62]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[63]  Yushan Yan,et al.  CNT-Based Electrodes with High Efficiency for PEMFCs , 2005 .

[64]  Omar M Yaghi,et al.  Gas Adsorption Sites in a Large-Pore Metal-Organic Framework , 2005, Science.

[65]  Xingzhong Zhao,et al.  Enhancement in Photoelectric Conversion Properties of the Dye-Sensitized Nanocrystalline Solar Cells Based on the Hybrid TiO2 Electrode , 2005 .

[66]  Y. Matsumoto,et al.  Electrochemical approach to evaluate the mechanism of photocatalytic water splitting on oxide photocatalysts , 2004 .

[67]  A. Załuska,et al.  Nanocrystalline magnesium for hydrogen storage , 1999 .

[68]  Christopher B. Murray,et al.  Structural diversity in binary nanoparticle superlattices , 2006, Nature.

[69]  A. Nozik Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. , 2001, Annual review of physical chemistry.

[70]  M. Grätzel Dye-sensitized solar cells , 2003 .

[71]  H. Inoue,et al.  Effect of surface modification of an MgNi alloy with graphite by ball-milling on the rate of hydrogen absorption , 1997 .

[72]  Akira Fujishima,et al.  Recent topics in photoelectrochemistry: achievements and future prospects , 2000 .

[73]  E. Suzuki,et al.  Photocatalytic production of hydrogen from water using TiO2 and B/TiO2 , 2000 .

[74]  Shahed U. M. Khan,et al.  Stability and photoresponse of nanocrystalline n-TiO{sub 2} and n-TiO{sub 2}/Mn{sub 2}O{sub 3} thin film electrodes during water splitting reactions , 1998 .

[75]  B. Bogdanovic,et al.  Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials , 1997 .

[76]  M. Murgia,et al.  Solid-state dye PV cells using inverse opal TiO2 films , 2005 .

[77]  S. Yoshikawa,et al.  Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells , 2003 .

[78]  P. Salvador Thermodynamic and kinetic considerations about water splitting and competitive reactions in a photoelectrochemical cell , 1988 .

[79]  J. Garche,et al.  Hydrogen adsorption on carbon materials , 1999 .

[80]  Y. Kawazoe,et al.  Ab Initio Study of Hydrogen Storage in Hydrogen Hydrate Clathrates , 2004 .

[81]  H. Imamura,et al.  Hydrogen absorption of Mg-Based composites prepared by mechanical milling: Factors affecting its characteristics , 1996 .

[82]  Dmitri V Talapin,et al.  Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. , 2006, Journal of the American Chemical Society.

[83]  Ladislav Kavan,et al.  Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. , 2005, Nano letters.

[84]  Peter G. Schultz,et al.  A Combinatorial Approach to Materials Discovery , 1995, Science.

[85]  J. White,et al.  Photodecomposition of water over Pt/TiO2 catalysts , 1980 .

[86]  Kenneth A. Smith,et al.  Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes , 1999 .

[87]  M. Gondal,et al.  Laser induced photocatalytic generation of hydrogen and oxygen over NiO and TiO2 , 2004 .

[88]  W. Akemann,et al.  Kinetics of electrooxidation of a CO monolayer at the platinum/electrolyte interface , 1998 .

[89]  A. Wiȩckowski,et al.  Surface Structure Effects in Platinum/Ruthenium Methanol Oxidation Electrocatalysis , 1998 .

[90]  Guoying Chen,et al.  Combinatorial discovery of bifunctional oxygen reduction — water oxidation electrocatalysts for regenerative fuel cells , 2001 .

[91]  D. Bavykin,et al.  Reversible storage of molecular hydrogen by sorption into multilayered TiO2 nanotubes. , 2005, The journal of physical chemistry. B.

[92]  Z. Yamani,et al.  Laser induced photo-catalytic oxidation/splitting of water over α-Fe2O3, WO3, TiO2 and NiO catalysts: activity comparison , 2004 .

[93]  James L. Gole,et al.  Formation of Oxynitride as the Photocatalytic Enhancing Site in Nitrogen‐Doped Titania Nanocatalysts: Comparison to a Commercial Nanopowder , 2005 .

[94]  A. Alivisatos,et al.  CdSe Nanocrystal Rods/Poly(3‐hexylthiophene) Composite Photovoltaic Devices , 1999 .

[95]  H. Imamura,et al.  Characterization and hydriding properties of Mg-graphite composites prepared by mechanical grinding as new hydrogen storage materials , 1997 .

[96]  Cheng,et al.  Hydrogen storage in single-walled carbon nanotubes at room temperature , 1999, Science.

[97]  H. Sugihara,et al.  Effect of Water/Acetonitrile Ratio on Dye-Sensitized Photocatalytic H2 Evolution under Visible Light Irradiation , 2005 .

[98]  A. Nozik Quantum dot solar cells , 2002 .

[99]  M. Graetzel,et al.  Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles , 1982 .

[100]  P. Ross,et al.  Electrocatalysts by design: from the tailored surface to a commercial catalyst , 2000 .

[101]  Julius M. Mwabora,et al.  Photoelectrochemical and Optical Properties of Nitrogen Doped Titanium Dioxide Films Prepared by Reactive DC Magnetron Sputtering , 2003 .

[102]  R. Brand,et al.  Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials , 2000 .

[103]  M. W. Cole,et al.  Hydrogen Adsorption in Nanotubes , 1998 .

[104]  H. Imamura,et al.  Hydrogen-absorbing magnesium composites prepared by mechanical grinding with graphite: effects of additives on composite structures and hydriding properties , 1999 .