Planktic foraminifera form their shells via metastable carbonate phases

[1]  A. Gagnon,et al.  Link between light-triggered Mg-banding and chamber formation in the planktic foraminifera Neogloboquadrina dutertrei , 2017, Nature Communications.

[2]  R. Wirth,et al.  Diagenetic Mg-calcite overgrowths on foraminiferal tests in the vicinity of methane seeps , 2017 .

[3]  B. Hönisch,et al.  Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation , 2016, Proceedings of the National Academy of Sciences.

[4]  P. Fratzl,et al.  Macromolecular recognition directs calcium ions to coccolith mineralization sites , 2016, Science.

[5]  E. Makovicky Vaterite: interpretation in terms of OD theory and its next of kin , 2016 .

[6]  D. Muller,et al.  Nanoscale assembly processes revealed in the nacroprismatic transition zone of Pinna nobilis mollusc shells , 2015, Nature Communications.

[7]  Anthony J. Giuffre,et al.  Isotopic tracer evidence for the amorphous calcium carbonate to calcite transformation by dissolution–reprecipitation , 2015 .

[8]  J. Banfield,et al.  Crystallization by particle attachment in synthetic, biogenic, and geologic environments , 2015, Science.

[9]  T. Tyliszczak,et al.  The coordination and distribution of B in foraminiferal calcite , 2015 .

[10]  J. Gale,et al.  Probing the Multiple Structures of Vaterite through Combined Computational and Experimental Raman Spectroscopy , 2014 .

[11]  S. Weiner,et al.  Particle Accretion Mechanism Underlies Biological Crystal Growth from an Amorphous Precursor Phase , 2014 .

[12]  J. Erez,et al.  Biomineralization in perforate foraminifera , 2014 .

[13]  G. Nehrke,et al.  A new model for biomineralization and trace-element signatures of Foraminifera tests , 2013 .

[14]  A. Fitch,et al.  Vaterite Crystals Contain Two Interspersed Crystal Structures , 2013, Science.

[15]  S. Weiner,et al.  Crystallization Pathways in Biomineralization , 2011 .

[16]  G. Nehrke,et al.  Calcium isotope fractionation in ikaite and vaterite , 2011 .

[17]  H. Xin,et al.  Calcite Prisms from Mollusk Shells (Atrina Rigida): Swiss‐cheese‐like Organic–Inorganic Single‐crystal Composites , 2011 .

[18]  R. Wirth,et al.  Amorphous calcium carbonate in the shells of adult Unionoida. , 2011, Journal of structural biology.

[19]  J. Erez,et al.  The role of seawater endocytosis in the biomineralization process in calcareous foraminifera , 2009, Proceedings of the National Academy of Sciences.

[20]  L. Gower Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. , 2008, Chemical reviews.

[21]  R. Wirth,et al.  Nanostructure, composition and mechanisms of bivalve shell growth , 2008 .

[22]  S. Weiner,et al.  Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule , 2008, Proceedings of the National Academy of Sciences.

[23]  W. Tremel,et al.  Early homogenous amorphous precursor stages of calcium carbonate and subsequent crystal growth in levitated droplets. , 2008, Journal of the American Chemical Society.

[24]  R. Feely,et al.  Relating estimates of CaCO3 production, export, and dissolution in the water column to measurements of CaCO3 rain into sediment traps and dissolution on the sea floor: A revised global carbonate budget , 2007 .

[25]  G. Eshel,et al.  Glacial deep water carbonate chemistry inferred from foraminiferal Mg/Ca: A case study from the western tropical Atlantic , 2006 .

[26]  R. Wirth,et al.  Focused ion beam (FIB): A novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy , 2004 .

[27]  Naoko I Kato,et al.  Reducing focused ion beam damage to transmission electron microscopy samples. , 2004, Journal of electron microscopy.

[28]  A. Navrotsky Energetic clues to pathways to biomineralization: precursors, clusters, and nanoparticles. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  G. Henderson,et al.  Temperature dependence of δ 7 Li, δ 44 Ca and Li/Ca during growth of calcium carbonate , 2004 .

[30]  C. Berney,et al.  The evolution of early Foraminifera , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M. Dietzel,et al.  Model for kinetic effects on calcium isotope fractionation (δ44Ca) in inorganic aragonite and cultured planktonic foraminifera , 2003 .

[32]  R. Schiebel Planktic foraminiferal sedimentation and the marine calcite budget , 2002 .

[33]  David Archer,et al.  Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio , 2002 .

[34]  D. Lea,et al.  Climate impact of late quaternary equatorial pacific sea surface temperature variations , 2000, Science.

[35]  William M. Balch,et al.  Biologically mediated dissolution of calcium carbonate above the chemical lysocline , 1999 .

[36]  J. Aizenberg,et al.  Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[37]  J. Erez,et al.  A biomineralization model for the incorporation of trace elements into foraminiferal calcium carbonate , 1996 .

[38]  D. Caron,et al.  Effects of gametogenesis on test structure and dissolution of some spinose planktonic foraminifera and implications for test preservation , 1990 .

[39]  H. Spero Ultrastructural examination of chamber morphogenesis and biomineralization in the planktonic foraminiferOrbulina universa , 1988 .

[40]  D. Caron,et al.  Growth of the spinose planktonic foraminifer Orbulina universa in laboratory culture and the effect of temperature on life processes , 1987, Journal of the Marine Biological Association of the United Kingdom.

[41]  J. Morse,et al.  The incorporation of Mg2+ and Sr2+ into calcite overgrowths: influences of growth rate and solution composition , 1983 .

[42]  H. Urey,et al.  MEASUREMENT OF PALEOTEMPERATURES AND TEMPERATURES OF THE UPPER CRETACEOUS OF ENGLAND, DENMARK, AND THE SOUTHEASTERN UNITED STATES , 1951 .

[43]  Anthony J. Giuffre,et al.  Chemical and physical controls on the transformation of amorphous calcium carbonate into crystalline CaCO 3 polymorphs , 2017 .

[44]  S. Eggins,et al.  Timing and mechanism for intratest Mg/Ca variability in a living planktic foraminifer , 2015 .

[45]  J. Gale,et al.  A new structural model for disorder in vaterite from first-principles calculations , 2012 .

[46]  G. Lloyd Microstructural evolution in a mylonitic quartz simple shear zone: the significant roles of dauphine twinning and misorientation , 2004, Geological Society, London, Special Publications.

[47]  F. Andersen,et al.  Infrared spectra of amorphous and crystalline calcium carbonate , 1991 .

[48]  P. Blackmon,et al.  Mineralogy of some foraminifera as related to their classification and ecology , 1959 .