On the k-server conjecture

We prove that the <italic>work function algorithm</italic> for the <italic>k</italic>-server problem has a competitive ratio at most 2<italic>k</italic>−1. Manasse et al. [1988] conjectured that the competitive ratio for the <italic>k</italic>-server problem is exactly <italic>k</italic> (it is trivially at least <italic>k</italic>); previously the best-known upper bound was exponential in <italic>k</italic>. Our proof involves three crucial ingredients: A <italic>quasiconvexity property</italic> of work functions, a <italic>duality lemma</italic> that uses quasiconvexity to characterize the configuration that achieve maximum increase of the work function, and a <italic>potential function</italic> that exploits the duality lemma.

[1]  Yuval Rabani,et al.  Lower bounds for randomized k-server and motion-planning algorithms , 1991, STOC '91.

[2]  Marek Chrobak,et al.  Page Migration Algorithms Using Work Functions , 1993, ISAAC.

[3]  Allan Borodin,et al.  On the power of randomization in online algorithms , 1990, STOC '90.

[4]  Gábor Tardos,et al.  A competitive 3-server algorithm , 1990, SODA '90.

[5]  Anna R. Karlin,et al.  Competitive randomized algorithms for non-uniform problems , 1990, SODA '90.

[6]  Elias Koutsoupias,et al.  On-line algorithms and the K-server conjecture , 1995 .

[7]  J. Hawk,et al.  The power. , 1976, The Journal of practical nursing.

[8]  Lyle A. McGeoch,et al.  Competitive Algorithms for Server Problems , 1990, J. Algorithms.

[9]  Lyle A. McGeoch,et al.  Competitive algorithms for on-line problems , 1988, STOC '88.

[10]  Robert E. Tarjan,et al.  Amortized efficiency of list update and paging rules , 1985, CACM.

[11]  E. Koutsoupias,et al.  On the k-server conjecture , 1994, STOC '94.

[12]  Edward F. Grove The harmonic online K-server algorithm is competitive , 1991, STOC '91.

[13]  Marek Chrobak,et al.  Generosity helps, or an 11–competitive algorithm for three servers , 1992, SODA '92.

[14]  Marek Chrobak,et al.  On Fast Algorithms for Two Servers , 1991, J. Algorithms.

[15]  Marek Chrobak,et al.  The Server Problem and On-Line Games , 1991, On-Line Algorithms.

[16]  Marek Chrobak,et al.  An Optimal On-Line Algorithm for k-Servers on Trees , 1991, SIAM J. Comput..

[17]  Yuval Rabani,et al.  A decomposition theorem and bounds for randomized server problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[18]  Prabhakar Raghavan,et al.  Random walks on weighted graphs and applications to on-line algorithms , 1993, JACM.

[19]  Yuval Rabani,et al.  Lower Bounds for Randomized k-Server and Motion-Planning Algorithms , 1994, SIAM J. Comput..

[20]  Sandy Irani,et al.  A Competitive 2-Server Algorithm , 1991, Inf. Process. Lett..

[21]  William R. Burley,et al.  Traversing Layered Graphs Using the Work Function Algorithm , 1996, J. Algorithms.

[22]  Marek Chrobak,et al.  Page Migration Algorithms Using Work Functions , 1993, J. Algorithms.

[23]  Christos H. Papadimitriou,et al.  The 2-Evader Problem , 1996, Inf. Process. Lett..

[24]  ChrobakMarek,et al.  An optimal on-line algorithm for K-servers on trees , 1991 .

[25]  Marek Chrobak,et al.  Harmonic is 3-Competitive for Two Servers , 1992, Theor. Comput. Sci..

[26]  Yuval Rabani,et al.  Competitive k-server algorithms , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[27]  Marek Chrobak,et al.  New results on server problems , 1991, SODA '90.